title
string
abstract
string
Transforming Business Rules Into Natural Language Text
The aim of the project presented in this paper is to design a system for an NLG architecture, which supports the documentation process of eBusiness models. A major task is to enrich the formal description of an eBusiness model with additional information needed in an NLG task.
Corpus based Enrichment of GermaNet Verb Frames
Lexical semantic resources, like WordNet, are often used in real applications of natural language document processing. For example, we integrated GermaNet in our document suite XDOC of processing of German forensic autopsy protocols. In addition to the hypernymy and synonymy relation, we want to adapt GermaNet's verb frames for our analysis. In this paper we outline an approach for the domain related enrichment of GermaNet verb frames by corpus based syntactic and co-occurred data analyses of real documents.
Context Related Derivation of Word Senses
Real applications of natural language document processing are very often confronted with domain specific lexical gaps during the analysis of documents of a new domain. This paper describes an approach for the derivation of domain specific concepts for the extension of an existing ontology. As resources we need an initial ontology and a partially processed corpus of a domain. We exploit the specific characteristic of the sublanguage in the corpus. Our approach is based on syntactical structures (noun phrases) and compound analyses to extract information required for the extension of GermaNet's lexical resources.
Transforming and Enriching Documents for the Semantic Web
We suggest to employ techniques from Natural Language Processing (NLP) and Knowledge Representation (KR) to transform existing documents into documents amenable for the Semantic Web. Semantic Web documents have at least part of their semantics and pragmatics marked up explicitly in both a machine processable as well as human readable manner. XML and its related standards (XSLT, RDF, Topic Maps etc.) are the unifying platform for the tools and methodologies developed for different application scenarios.
Perspectives for Strong Artificial Life
This text introduces the twin deadlocks of strong artificial life. Conceptualization of life is a deadlock both because of the existence of a continuum between the inert and the living, and because we only know one instance of life. Computationalism is a second deadlock since it remains a matter of faith. Nevertheless, artificial life realizations quickly progress and recent constructions embed an always growing set of the intuitive properties of life. This growing gap between theory and realizations should sooner or later crystallize in some kind of paradigm shift and then give clues to break the twin deadlocks.
Neural-Network Techniques for Visual Mining Clinical Electroencephalograms
In this chapter we describe new neural-network techniques developed for visual mining clinical electroencephalograms (EEGs), the weak electrical potentials invoked by brain activity. These techniques exploit fruitful ideas of Group Method of Data Handling (GMDH). Section 2 briefly describes the standard neural-network techniques which are able to learn well-suited classification modes from data presented by relevant features. Section 3 introduces an evolving cascade neural network technique which adds new input nodes as well as new neurons to the network while the training error decreases. This algorithm is applied to recognize artifacts in the clinical EEGs. Section 4 presents the GMDH-type polynomial networks learnt from data. We applied this technique to distinguish the EEGs recorded from an Alzheimer and a healthy patient as well as recognize EEG artifacts. Section 5 describes the new neural-network technique developed to induce multi-class concepts from data. We used this technique for inducing a 16-class concept from the large-scale clinical EEG data. Finally we discuss perspectives of applying the neural-network techniques to clinical EEGs.
Estimating Classification Uncertainty of Bayesian Decision Tree Technique on Financial Data
Bayesian averaging over classification models allows the uncertainty of classification outcomes to be evaluated, which is of crucial importance for making reliable decisions in applications such as financial in which risks have to be estimated. The uncertainty of classification is determined by a trade-off between the amount of data available for training, the diversity of a classifier ensemble and the required performance. The interpretability of classification models can also give useful information for experts responsible for making reliable classifications. For this reason Decision Trees (DTs) seem to be attractive classification models. The required diversity of the DT ensemble can be achieved by using the Bayesian model averaging all possible DTs. In practice, the Bayesian approach can be implemented on the base of a Markov Chain Monte Carlo (MCMC) technique of random sampling from the posterior distribution. For sampling large DTs, the MCMC method is extended by Reversible Jump technique which allows inducing DTs under given priors. For the case when the prior information on the DT size is unavailable, the sweeping technique defining the prior implicitly reveals a better performance. Within this Chapter we explore the classification uncertainty of the Bayesian MCMC techniques on some datasets from the StatLog Repository and real financial data. The classification uncertainty is compared within an Uncertainty Envelope technique dealing with the class posterior distribution and a given confidence probability. This technique provides realistic estimates of the classification uncertainty which can be easily interpreted in statistical terms with the aim of risk evaluation.
Comparison of the Bayesian and Randomised Decision Tree Ensembles within an Uncertainty Envelope Technique
Multiple Classifier Systems (MCSs) allow evaluation of the uncertainty of classification outcomes that is of crucial importance for safety critical applications. The uncertainty of classification is determined by a trade-off between the amount of data available for training, the classifier diversity and the required performance. The interpretability of MCSs can also give useful information for experts responsible for making reliable classifications. For this reason Decision Trees (DTs) seem to be attractive classification models for experts. The required diversity of MCSs exploiting such classification models can be achieved by using two techniques, the Bayesian model averaging and the randomised DT ensemble. Both techniques have revealed promising results when applied to real-world problems. In this paper we experimentally compare the classification uncertainty of the Bayesian model averaging with a restarting strategy and the randomised DT ensemble on a synthetic dataset and some domain problems commonly used in the machine learning community. To make the Bayesian DT averaging feasible, we use a Markov Chain Monte Carlo technique. The classification uncertainty is evaluated within an Uncertainty Envelope technique dealing with the class posterior distribution and a given confidence probability. Exploring a full posterior distribution, this technique produces realistic estimates which can be easily interpreted in statistical terms. In our experiments we found out that the Bayesian DTs are superior to the randomised DT ensembles within the Uncertainty Envelope technique.
Proceedings of the Pacific Knowledge Acquisition Workshop 2004
Artificial intelligence (AI) research has evolved over the last few decades and knowledge acquisition research is at the core of AI research. PKAW-04 is one of three international knowledge acquisition workshops held in the Pacific-Rim, Canada and Europe over the last two decades. PKAW-04 has a strong emphasis on incremental knowledge acquisition, machine learning, neural nets and active mining. The proceedings contain 19 papers that were selected by the program committee among 24 submitted papers. All papers were peer reviewed by at least two reviewers. The papers in these proceedings cover the methods and tools as well as the applications related to develop expert systems or knowledge based systems.
Temporal and Spatial Data Mining with Second-Order Hidden Models
In the frame of designing a knowledge discovery system, we have developed stochastic models based on high-order hidden Markov models. These models are capable to map sequences of data into a Markov chain in which the transitions between the states depend on the \texttt{n} previous states according to the order of the model. We study the process of achieving information extraction fromspatial and temporal data by means of an unsupervised classification. We use therefore a French national database related to the land use of a region, named Teruti, which describes the land use both in the spatial and temporal domain. Land-use categories (wheat, corn, forest, ...) are logged every year on each site regularly spaced in the region. They constitute a temporal sequence of images in which we look for spatial and temporal dependencies. The temporal segmentation of the data is done by means of a second-order Hidden Markov Model (\hmmd) that appears to have very good capabilities to locate stationary segments, as shown in our previous work in speech recognition. Thespatial classification is performed by defining a fractal scanning ofthe images with the help of a Hilbert-Peano curve that introduces atotal order on the sites, preserving the relation ofneighborhood between the sites. We show that the \hmmd performs aclassification that is meaningful for the agronomists.Spatial and temporal classification may be achieved simultaneously by means of a 2 levels \hmmd that measures the \aposteriori probability to map a temporal sequence of images onto a set of hidden classes.
An ontological approach to the construction of problem-solving models
Our ongoing work aims at defining an ontology-centered approach for building expertise models for the CommonKADS methodology. This approach (which we have named "OntoKADS") is founded on a core problem-solving ontology which distinguishes between two conceptualization levels: at an object level, a set of concepts enable us to define classes of problem-solving situations, and at a meta level, a set of meta-concepts represent modeling primitives. In this article, our presentation of OntoKADS will focus on the core ontology and, in particular, on roles - the primitive situated at the interface between domain knowledge and reasoning, and whose ontological status is still much debated. We first propose a coherent, global, ontological framework which enables us to account for this primitive. We then show how this novel characterization of the primitive allows definition of new rules for the construction of expertise models.
A Constrained Object Model for Configuration Based Workflow Composition
Automatic or assisted workflow composition is a field of intense research for applications to the world wide web or to business process modeling. Workflow composition is traditionally addressed in various ways, generally via theorem proving techniques. Recent research observed that building a composite workflow bears strong relationships with finite model search, and that some workflow languages can be defined as constrained object metamodels . This lead to consider the viability of applying configuration techniques to this problem, which was proven feasible. Constrained based configuration expects a constrained object model as input. The purpose of this document is to formally specify the constrained object model involved in ongoing experiments and research using the Z specification language.
A Study for the Feature Core of Dynamic Reduct
To the reduct problems of decision system, the paper proposes the notion of dynamic core according to the dynamic reduct model. It describes various formal definitions of dynamic core, and discusses some properties about dynamic core. All of these show that dynamic core possesses the essential characters of the feature core.
Two-dimensional cellular automata and the analysis of correlated time series
Correlated time series are time series that, by virtue of the underlying process to which they refer, are expected to influence each other strongly. We introduce a novel approach to handle such time series, one that models their interaction as a two-dimensional cellular automaton and therefore allows them to be treated as a single entity. We apply our approach to the problems of filling gaps and predicting values in rainfall time series. Computational results show that the new approach compares favorably to Kalman smoothing and filtering.
ATNoSFERES revisited
ATNoSFERES is a Pittsburgh style Learning Classifier System (LCS) in which the rules are represented as edges of an Augmented Transition Network. Genotypes are strings of tokens of a stack-based language, whose execution builds the labeled graph. The original ATNoSFERES, using a bitstring to represent the language tokens, has been favorably compared in previous work to several Michigan style LCSs architectures in the context of Non Markov problems. Several modifications of ATNoSFERES are proposed here: the most important one conceptually being a representational change: each token is now represented by an integer, hence the genotype is a string of integers; several other modifications of the underlying grammar language are also proposed. The resulting ATNoSFERES-II is validated on several standard animat Non Markov problems, on which it outperforms all previously published results in the LCS literature. The reasons for these improvement are carefully analyzed, and some assumptions are proposed on the underlying mechanisms in order to explain these good results.
Planning with Preferences using Logic Programming
We present a declarative language, PP, for the high-level specification of preferences between possible solutions (or trajectories) of a planning problem. This novel language allows users to elegantly express non-trivial, multi-dimensional preferences and priorities over such preferences. The semantics of PP allows the identification of most preferred trajectories for a given goal. We also provide an answer set programming implementation of planning problems with PP preferences.
Clustering Mixed Numeric and Categorical Data: A Cluster Ensemble Approach
Clustering is a widely used technique in data mining applications for discovering patterns in underlying data. Most traditional clustering algorithms are limited to handling datasets that contain either numeric or categorical attributes. However, datasets with mixed types of attributes are common in real life data mining applications. In this paper, we propose a novel divide-and-conquer technique to solve this problem. First, the original mixed dataset is divided into two sub-datasets: the pure categorical dataset and the pure numeric dataset. Next, existing well established clustering algorithms designed for different types of datasets are employed to produce corresponding clusters. Last, the clustering results on the categorical and numeric dataset are combined as a categorical dataset, on which the categorical data clustering algorithm is used to get the final clusters. Our contribution in this paper is to provide an algorithm framework for the mixed attributes clustering problem, in which existing clustering algorithms can be easily integrated, the capabilities of different kinds of clustering algorithms and characteristics of different types of datasets could be fully exploited. Comparisons with other clustering algorithms on real life datasets illustrate the superiority of our approach.
K-Histograms: An Efficient Clustering Algorithm for Categorical Dataset
Clustering categorical data is an integral part of data mining and has attracted much attention recently. In this paper, we present k-histogram, a new efficient algorithm for clustering categorical data. The k-histogram algorithm extends the k-means algorithm to categorical domain by replacing the means of clusters with histograms, and dynamically updates histograms in the clustering process. Experimental results on real datasets show that k-histogram algorithm can produce better clustering results than k-modes algorithm, the one related with our work most closely.
Integration of the DOLCE top-level ontology into the OntoSpec methodology
This report describes a new version of the OntoSpec methodology for ontology building. Defined by the LaRIA Knowledge Engineering Team (University of Picardie Jules Verne, Amiens, France), OntoSpec aims at helping builders to model ontological knowledge (upstream of formal representation). The methodology relies on a set of rigorously-defined modelling primitives and principles. Its application leads to the elaboration of a semi-informal ontology, which is independent of knowledge representation languages. We recently enriched the OntoSpec methodology by endowing it with a new resource, the DOLCE top-level ontology defined at the LOA (IST-CNR, Trento, Italy). The goal of this integration is to provide modellers with additional help in structuring application ontologies, while maintaining independence vis-\`{a}-vis formal representation languages. In this report, we first provide an overview of the OntoSpec methodology's general principles and then describe the DOLCE re-engineering process. A complete version of DOLCE-OS (i.e. a specification of DOLCE in the semi-informal OntoSpec language) is presented in an appendix.
Using Interval Particle Filtering for Marker less 3D Human Motion Capture
In this paper we present a new approach for marker less human motion capture from conventional camera feeds. The aim of our study is to recover 3D positions of key points of the body that can serve for gait analysis. Our approach is based on foreground segmentation, an articulated body model and particle filters. In order to be generic and simple no restrictive dynamic modelling was used. A new modified particle filtering algorithm was introduced. It is used efficiently to search the model configuration space. This new algorithm which we call Interval Particle Filtering reorganizes the configurations search space in an optimal deterministic way and proved to be efficient in tracking natural human movement. Results for human motion capture from a single camera are presented and compared to results obtained from a marker based system. The system proved to be able to track motion successfully even in partial occlusions.
Markerless Human Motion Capture for Gait Analysis
The aim of our study is to detect balance disorders and a tendency towards the falls in the elderly, knowing gait parameters. In this paper we present a new tool for gait analysis based on markerless human motion capture, from camera feeds. The system introduced here, recovers the 3D positions of several key points of the human body while walking. Foreground segmentation, an articulated body model and particle filtering are basic elements of our approach. No dynamic model is used thus this system can be described as generic and simple to implement. A modified particle filtering algorithm, which we call Interval Particle Filtering, is used to reorganise and search through the model's configurations search space in a deterministic optimal way. This algorithm was able to perform human movement tracking with success. Results from the treatment of a single cam feeds are shown and compared to results obtained using a marker based human motion capture system.
Evidence with Uncertain Likelihoods
An agent often has a number of hypotheses, and must choose among them based on observations, or outcomes of experiments. Each of these observations can be viewed as providing evidence for or against various hypotheses. All the attempts to formalize this intuition up to now have assumed that associated with each hypothesis h there is a likelihood function \mu_h, which is a probability measure that intuitively describes how likely each observation is, conditional on h being the correct hypothesis. We consider an extension of this framework where there is uncertainty as to which of a number of likelihood functions is appropriate, and discuss how one formal approach to defining evidence, which views evidence as a function from priors to posteriors, can be generalized to accommodate this uncertainty.
Neuronal Spectral Analysis of EEG and Expert Knowledge Integration for Automatic Classification of Sleep Stages
Being able to analyze and interpret signal coming from electroencephalogram (EEG) recording can be of high interest for many applications including medical diagnosis and Brain-Computer Interfaces. Indeed, human experts are today able to extract from this signal many hints related to physiological as well as cognitive states of the recorded subject and it would be very interesting to perform such task automatically but today no completely automatic system exists. In previous studies, we have compared human expertise and automatic processing tools, including artificial neural networks (ANN), to better understand the competences of each and determine which are the difficult aspects to integrate in a fully automatic system. In this paper, we bring more elements to that study in reporting the main results of a practical experiment which was carried out in an hospital for sleep pathology study. An EEG recording was studied and labeled by a human expert and an ANN. We describe here the characteristics of the experiment, both human and neuronal procedure of analysis, compare their performances and point out the main limitations which arise from this study.
An efficient memetic, permutation-based evolutionary algorithm for real-world train timetabling
Train timetabling is a difficult and very tightly constrained combinatorial problem that deals with the construction of train schedules. We focus on the particular problem of local reconstruction of the schedule following a small perturbation, seeking minimisation of the total accumulated delay by adapting times of departure and arrival for each train and allocation of resources (tracks, routing nodes, etc.). We describe a permutation-based evolutionary algorithm that relies on a semi-greedy heuristic to gradually reconstruct the schedule by inserting trains one after the other following the permutation. This algorithm can be hybridised with ILOG commercial MIP programming tool CPLEX in a coarse-grained manner: the evolutionary part is used to quickly obtain a good but suboptimal solution and this intermediate solution is refined using CPLEX. Experimental results are presented on a large real-world case involving more than one million variables and 2 million constraints. Results are surprisingly good as the evolutionary algorithm, alone or hybridised, produces excellent solutions much faster than CPLEX alone.
Evolutionary Computing
Evolutionary computing (EC) is an exciting development in Computer Science. It amounts to building, applying and studying algorithms based on the Darwinian principles of natural selection. In this paper we briefly introduce the main concepts behind evolutionary computing. We present the main components all evolutionary algorithms (EA), sketch the differences between different types of EAs and survey application areas ranging from optimization, modeling and simulation to entertainment.
Towards a Hierarchical Model of Consciousness, Intelligence, Mind and Body
This article is taken out.
Evolution of Voronoi based Fuzzy Recurrent Controllers
A fuzzy controller is usually designed by formulating the knowledge of a human expert into a set of linguistic variables and fuzzy rules. Among the most successful methods to automate the fuzzy controllers development process are evolutionary algorithms. In this work, we propose the Recurrent Fuzzy Voronoi (RFV) model, a representation for recurrent fuzzy systems. It is an extension of the FV model proposed by Kavka and Schoenauer that extends the application domain to include temporal problems. The FV model is a representation for fuzzy controllers based on Voronoi diagrams that can represent fuzzy systems with synergistic rules, fulfilling the $\epsilon$-completeness property and providing a simple way to introduce a priory knowledge. In the proposed representation, the temporal relations are embedded by including internal units that provide feedback by connecting outputs to inputs. These internal units act as memory elements. In the RFV model, the semantic of the internal units can be specified together with the a priori rules. The geometric interpretation of the rules allows the use of geometric variational operators during the evolution. The representation and the algorithms are validated in two problems in the area of system identification and evolutionary robotics.
Branch-and-Prune Search Strategies for Numerical Constraint Solving
When solving numerical constraints such as nonlinear equations and inequalities, solvers often exploit pruning techniques, which remove redundant value combinations from the domains of variables, at pruning steps. To find the complete solution set, most of these solvers alternate the pruning steps with branching steps, which split each problem into subproblems. This forms the so-called branch-and-prune framework, well known among the approaches for solving numerical constraints. The basic branch-and-prune search strategy that uses domain bisections in place of the branching steps is called the bisection search. In general, the bisection search works well in case (i) the solutions are isolated, but it can be improved further in case (ii) there are continuums of solutions (this often occurs when inequalities are involved). In this paper, we propose a new branch-and-prune search strategy along with several variants, which not only allow yielding better branching decisions in the latter case, but also work as well as the bisection search does in the former case. These new search algorithms enable us to employ various pruning techniques in the construction of inner and outer approximations of the solution set. Our experiments show that these algorithms speed up the solving process often by one order of magnitude or more when solving problems with continuums of solutions, while keeping the same performance as the bisection search when the solutions are isolated.
Processing Uncertainty and Indeterminacy in Information Systems success mapping
IS success is a complex concept, and its evaluation is complicated, unstructured and not readily quantifiable. Numerous scientific publications address the issue of success in the IS field as well as in other fields. But, little efforts have been done for processing indeterminacy and uncertainty in success research. This paper shows a formal method for mapping success using Neutrosophic Success Map. This is an emerging tool for processing indeterminacy and uncertainty in success research. EIS success have been analyzed using this tool.
Mathematical Models in Schema Theory
In this paper, a mathematical schema theory is developed. This theory has three roots: brain theory schemas, grid automata, and block-shemas. In Section 2 of this paper, elements of the theory of grid automata necessary for the mathematical schema theory are presented. In Section 3, elements of brain theory necessary for the mathematical schema theory are presented. In Section 4, other types of schemas are considered. In Section 5, the mathematical schema theory is developed. The achieved level of schema representation allows one to model by mathematical tools virtually any type of schemas considered before, including schemas in neurophisiology, psychology, computer science, Internet technology, databases, logic, and mathematics.
Truecluster: robust scalable clustering with model selection
Data-based classification is fundamental to most branches of science. While recent years have brought enormous progress in various areas of statistical computing and clustering, some general challenges in clustering remain: model selection, robustness, and scalability to large datasets. We consider the important problem of deciding on the optimal number of clusters, given an arbitrary definition of space and clusteriness. We show how to construct a cluster information criterion that allows objective model selection. Differing from other approaches, our truecluster method does not require specific assumptions about underlying distributions, dissimilarity definitions or cluster models. Truecluster puts arbitrary clustering algorithms into a generic unified (sampling-based) statistical framework. It is scalable to big datasets and provides robust cluster assignments and case-wise diagnostics. Truecluster will make clustering more objective, allows for automation, and will save time and costs. Free R software is available.
Divide-and-Evolve: a New Memetic Scheme for Domain-Independent Temporal Planning
An original approach, termed Divide-and-Evolve is proposed to hybridize Evolutionary Algorithms (EAs) with Operational Research (OR) methods in the domain of Temporal Planning Problems (TPPs). Whereas standard Memetic Algorithms use local search methods to improve the evolutionary solutions, and thus fail when the local method stops working on the complete problem, the Divide-and-Evolve approach splits the problem at hand into several, hopefully easier, sub-problems, and can thus solve globally problems that are intractable when directly fed into deterministic OR algorithms. But the most prominent advantage of the Divide-and-Evolve approach is that it immediately opens up an avenue for multi-objective optimization, even though the OR method that is used is single-objective. Proof of concept approach on the standard (single-objective) Zeno transportation benchmark is given, and a small original multi-objective benchmark is proposed in the same Zeno framework to assess the multi-objective capabilities of the proposed methodology, a breakthrough in Temporal Planning.
Artificial and Biological Intelligence
This article considers evidence from physical and biological sciences to show machines are deficient compared to biological systems at incorporating intelligence. Machines fall short on two counts: firstly, unlike brains, machines do not self-organize in a recursive manner; secondly, machines are based on classical logic, whereas Nature's intelligence may depend on quantum mechanics.
Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data
Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.
Avoiding the Bloat with Stochastic Grammar-based Genetic Programming
The application of Genetic Programming to the discovery of empirical laws is often impaired by the huge size of the search space, and consequently by the computer resources needed. In many cases, the extreme demand for memory and CPU is due to the massive growth of non-coding segments, the introns. The paper presents a new program evolution framework which combines distribution-based evolution in the PBIL spirit, with grammar-based genetic programming; the information is stored as a probability distribution on the gra mmar rules, rather than in a population. Experiments on a real-world like problem show that this approach gives a practical solution to the problem of intron growth.
Classifying Signals with Local Classifiers
This paper deals with the problem of classifying signals. The new method for building so called local classifiers and local features is presented. The method is a combination of the lifting scheme and the support vector machines. Its main aim is to produce effective and yet comprehensible classifiers that would help in understanding processes hidden behind classified signals. To illustrate the method we present the results obtained on an artificial and a real dataset.
Open Answer Set Programming with Guarded Programs
Open answer set programming (OASP) is an extension of answer set programming where one may ground a program with an arbitrary superset of the program's constants. We define a fixed point logic (FPL) extension of Clark's completion such that open answer sets correspond to models of FPL formulas and identify a syntactic subclass of programs, called (loosely) guarded programs. Whereas reasoning with general programs in OASP is undecidable, the FPL translation of (loosely) guarded programs falls in the decidable (loosely) guarded fixed point logic (mu(L)GF). Moreover, we reduce normal closed ASP to loosely guarded OASP, enabling for the first time, a characterization of an answer set semantics by muLGF formulas. We further extend the open answer set semantics for programs with generalized literals. Such generalized programs (gPs) have interesting properties, e.g., the ability to express infinity axioms. We restrict the syntax of gPs such that both rules and generalized literals are guarded. Via a translation to guarded fixed point logic, we deduce 2-exptime-completeness of satisfiability checking in such guarded gPs (GgPs). Bound GgPs are restricted GgPs with exptime-complete satisfiability checking, but still sufficiently expressive to optimally simulate computation tree logic (CTL). We translate Datalog lite programs to GgPs, establishing equivalence of GgPs under an open answer set semantics, alternation-free muGF, and Datalog lite.
Metatheory of actions: beyond consistency
Consistency check has been the only criterion for theory evaluation in logic-based approaches to reasoning about actions. This work goes beyond that and contributes to the metatheory of actions by investigating what other properties a good domain description in reasoning about actions should have. We state some metatheoretical postulates concerning this sore spot. When all postulates are satisfied together we have a modular action theory. Besides being easier to understand and more elaboration tolerant in McCarthy's sense, modular theories have interesting properties. We point out the problems that arise when the postulates about modularity are violated and propose algorithmic checks that can help the designer of an action theory to overcome them.
Estimation of linear, non-gaussian causal models in the presence of confounding latent variables
The estimation of linear causal models (also known as structural equation models) from data is a well-known problem which has received much attention in the past. Most previous work has, however, made an explicit or implicit assumption of gaussianity, limiting the identifiability of the models. We have recently shown (Shimizu et al, 2005; Hoyer et al, 2006) that for non-gaussian distributions the full causal model can be estimated in the no hidden variables case. In this contribution, we discuss the estimation of the model when confounding latent variables are present. Although in this case uniqueness is no longer guaranteed, there is at most a finite set of models which can fit the data. We develop an algorithm for estimating this set, and describe numerical simulations which confirm the theoretical arguments and demonstrate the practical viability of the approach. Full Matlab code is provided for all simulations.
Application of Support Vector Regression to Interpolation of Sparse Shock Physics Data Sets
Shock physics experiments are often complicated and expensive. As a result, researchers are unable to conduct as many experiments as they would like - leading to sparse data sets. In this paper, Support Vector Machines for regression are applied to velocimetry data sets for shock damaged and melted tin metal. Some success at interpolating between data sets is achieved. Implications for future work are discussed.
Approximation Algorithms for K-Modes Clustering
In this paper, we study clustering with respect to the k-modes objective function, a natural formulation of clustering for categorical data. One of the main contributions of this paper is to establish the connection between k-modes and k-median, i.e., the optimum of k-median is at most twice the optimum of k-modes for the same categorical data clustering problem. Based on this observation, we derive a deterministic algorithm that achieves an approximation factor of 2. Furthermore, we prove that the distance measure in k-modes defines a metric. Hence, we are able to extend existing approximation algorithms for metric k-median to k-modes. Empirical results verify the superiority of our method.
Can an Organism Adapt Itself to Unforeseen Circumstances?
A model of an organism as an autonomous intelligent system has been proposed. This model was used to analyze learning of an organism in various environmental conditions. Processes of learning were divided into two types: strong and weak processes taking place in the absence and the presence of aprioristic information about an object respectively. Weak learning is synonymous to adaptation when aprioristic programs already available in a system (an organism) are started. It was shown that strong learning is impossible for both an organism and any autonomous intelligent system. It was shown also that the knowledge base of an organism cannot be updated. Therefore, all behavior programs of an organism are congenital. A model of a conditioned reflex as a series of consecutive measurements of environmental parameters has been advanced. Repeated measurements are necessary in this case to reduce the error during decision making.
Adaptative combination rule and proportional conflict redistribution rule for information fusion
This paper presents two new promising rules of combination for the fusion of uncertain and potentially highly conflicting sources of evidences in the framework of the theory of belief functions in order to palliate the well-know limitations of Dempster's rule and to work beyond the limits of applicability of the Dempster-Shafer theory. We present both a new class of adaptive combination rules (ACR) and a new efficient Proportional Conflict Redistribution (PCR) rule allowing to deal with highly conflicting sources for static and dynamic fusion applications.
Retraction and Generalized Extension of Computing with Words
Fuzzy automata, whose input alphabet is a set of numbers or symbols, are a formal model of computing with values. Motivated by Zadeh's paradigm of computing with words rather than numbers, Ying proposed a kind of fuzzy automata, whose input alphabet consists of all fuzzy subsets of a set of symbols, as a formal model of computing with all words. In this paper, we introduce a somewhat general formal model of computing with (some special) words. The new features of the model are that the input alphabet only comprises some (not necessarily all) fuzzy subsets of a set of symbols and the fuzzy transition function can be specified arbitrarily. By employing the methodology of fuzzy control, we establish a retraction principle from computing with words to computing with values for handling crisp inputs and a generalized extension principle from computing with words to computing with all words for handling fuzzy inputs. These principles show that computing with values and computing with all words can be respectively implemented by computing with words. Some algebraic properties of retractions and generalized extensions are addressed as well.
A Knowledge-Based Approach for Selecting Information Sources
Through the Internet and the World-Wide Web, a vast number of information sources has become available, which offer information on various subjects by different providers, often in heterogeneous formats. This calls for tools and methods for building an advanced information-processing infrastructure. One issue in this area is the selection of suitable information sources in query answering. In this paper, we present a knowledge-based approach to this problem, in the setting where one among a set of information sources (prototypically, data repositories) should be selected for evaluating a user query. We use extended logic programs (ELPs) to represent rich descriptions of the information sources, an underlying domain theory, and user queries in a formal query language (here, XML-QL, but other languages can be handled as well). Moreover, we use ELPs for declarative query analysis and generation of a query description. Central to our approach are declarative source-selection programs, for which we define syntax and semantics. Due to the structured nature of the considered data items, the semantics of such programs must carefully respect implicit context information in source-selection rules, and furthermore combine it with possible user preferences. A prototype implementation of our approach has been realized exploiting the DLV KR system and its plp front-end for prioritized ELPs. We describe a representative example involving specific movie databases, and report about experimental results.
Perspective alignment in spatial language
It is well known that perspective alignment plays a major role in the planning and interpretation of spatial language. In order to understand the role of perspective alignment and the cognitive processes involved, we have made precise complete cognitive models of situated embodied agents that self-organise a communication system for dialoging about the position and movement of real world objects in their immediate surroundings. We show in a series of robotic experiments which cognitive mechanisms are necessary and sufficient to achieve successful spatial language and why and how perspective alignment can take place, either implicitly or based on explicit marking.
Reasoning and Planning with Sensing Actions, Incomplete Information, and Static Causal Laws using Answer Set Programming
We extend the 0-approximation of sensing actions and incomplete information in [Son and Baral 2000] to action theories with static causal laws and prove its soundness with respect to the possible world semantics. We also show that the conditional planning problem with respect to this approximation is NP-complete. We then present an answer set programming based conditional planner, called ASCP, that is capable of generating both conformant plans and conditional plans in the presence of sensing actions, incomplete information about the initial state, and static causal laws. We prove the correctness of our implementation and argue that our planner is sound and complete with respect to the proposed approximation. Finally, we present experimental results comparing ASCP to other planners.
Approximate Discrete Probability Distribution Representation using a Multi-Resolution Binary Tree
Computing and storing probabilities is a hard problem as soon as one has to deal with complex distributions over multiple random variables. The problem of efficient representation of probability distributions is central in term of computational efficiency in the field of probabilistic reasoning. The main problem arises when dealing with joint probability distributions over a set of random variables: they are always represented using huge probability arrays. In this paper, a new method based on binary-tree representation is introduced in order to store efficiently very large joint distributions. Our approach approximates any multidimensional joint distributions using an adaptive discretization of the space. We make the assumption that the lower is the probability mass of a particular region of feature space, the larger is the discretization step. This assumption leads to a very optimized representation in term of time and memory. The other advantages of our approach are the ability to refine dynamically the distribution every time it is needed leading to a more accurate representation of the probability distribution and to an anytime representation of the distribution.
Diagnosability of Fuzzy Discrete Event Systems
In order to more effectively cope with the real-world problems of vagueness, {\it fuzzy discrete event systems} (FDESs) were proposed recently, and the supervisory control theory of FDESs was developed. In view of the importance of failure diagnosis, in this paper, we present an approach of the failure diagnosis in the framework of FDESs. More specifically: (1) We formalize the definition of diagnosability for FDESs, in which the observable set and failure set of events are {\it fuzzy}, that is, each event has certain degree to be observable and unobservable, and, also, each event may possess different possibility of failure occurring. (2) Through the construction of observability-based diagnosers of FDESs, we investigate its some basic properties. In particular, we present a necessary and sufficient condition for diagnosability of FDESs. (3) Some examples serving to illuminate the applications of the diagnosability of FDESs are described. To conclude, some related issues are raised for further consideration.
Classification of Ordinal Data
Classification of ordinal data is one of the most important tasks of relation learning. In this thesis a novel framework for ordered classes is proposed. The technique reduces the problem of classifying ordered classes to the standard two-class problem. The introduced method is then mapped into support vector machines and neural networks. Compared with a well-known approach using pairwise objects as training samples, the new algorithm has a reduced complexity and training time. A second novel model, the unimodal model, is also introduced and a parametric version is mapped into neural networks. Several case studies are presented to assert the validity of the proposed models.
Imagination as Holographic Processor for Text Animation
Imagination is the critical point in developing of realistic artificial intelligence (AI) systems. One way to approach imagination would be simulation of its properties and operations. We developed two models: AI-Brain Network Hierarchy of Languages and Semantical Holographic Calculus as well as simulation system ScriptWriter that emulate the process of imagination through an automatic animation of English texts. The purpose of this paper is to demonstrate the model and to present ScriptWriter system http://nvo.sdsc.edu/NVO/JCSG/get_SRB_mime_file2.cgi//home/tamara.sdsc/test/demo.zip?F=/home/tamara.sdsc/test/demo.zip&M=application/x-gtar for simulation of the imagination.
Belief Calculus
In Dempster-Shafer belief theory, general beliefs are expressed as belief mass distribution functions over frames of discernment. In Subjective Logic beliefs are expressed as belief mass distribution functions over binary frames of discernment. Belief representations in Subjective Logic, which are called opinions, also contain a base rate parameter which express the a priori belief in the absence of evidence. Philosophically, beliefs are quantitative representations of evidence as perceived by humans or by other intelligent agents. The basic operators of classical probability calculus, such as addition and multiplication, can be applied to opinions, thereby making belief calculus practical. Through the equivalence between opinions and Beta probability density functions, this also provides a calculus for Beta probability density functions. This article explains the basic elements of belief calculus.
The Cumulative Rule for Belief Fusion
The problem of combining beliefs in the Dempster-Shafer belief theory has attracted considerable attention over the last two decades. The classical Dempster's Rule has often been criticised, and many alternative rules for belief combination have been proposed in the literature. The consensus operator for combining beliefs has nice properties and produces more intuitive results than Dempster's rule, but has the limitation that it can only be applied to belief distribution functions on binary state spaces. In this paper we present a generalisation of the consensus operator that can be applied to Dirichlet belief functions on state spaces of arbitrary size. This rule, called the cumulative rule of belief combination, can be derived from classical statistical theory, and corresponds well with human intuition.
New Millennium AI and the Convergence of History
Artificial Intelligence (AI) has recently become a real formal science: the new millennium brought the first mathematically sound, asymptotically optimal, universal problem solvers, providing a new, rigorous foundation for the previously largely heuristic field of General AI and embedded agents. At the same time there has been rapid progress in practical methods for learning true sequence-processing programs, as opposed to traditional methods limited to stationary pattern association. Here we will briefly review some of the new results, and speculate about future developments, pointing out that the time intervals between the most notable events in over 40,000 years or 2^9 lifetimes of human history have sped up exponentially, apparently converging to zero within the next few decades. Or is this impression just a by-product of the way humans allocate memory space to past events?
Belief Conditioning Rules (BCRs)
In this paper we propose a new family of Belief Conditioning Rules (BCRs) for belief revision. These rules are not directly related with the fusion of several sources of evidence but with the revision of a belief assignment available at a given time according to the new truth (i.e. conditioning constraint) one has about the space of solutions of the problem.
Islands for SAT
In this note we introduce the notion of islands for restricting local search. We show how we can construct islands for CNF SAT problems, and how much search space can be eliminated by restricting search to the island.
About Norms and Causes
Knowing the norms of a domain is crucial, but there exist no repository of norms. We propose a method to extract them from texts: texts generally do not describe a norm, but rather how a state-of-affairs differs from it. Answers concerning the cause of the state-of-affairs described often reveal the implicit norm. We apply this idea to the domain of driving, and validate it by designing algorithms that identify, in a text, the "basic" norms to which it refers implicitly.
Representing Knowledge about Norms
Norms are essential to extend inference: inferences based on norms are far richer than those based on logical implications. In the recent decades, much effort has been devoted to reason on a domain, once its norms are represented. How to extract and express those norms has received far less attention. Extraction is difficult: as the readers are supposed to know them, the norms of a domain are seldom made explicit. For one thing, extracting norms requires a language to represent them, and this is the topic of this paper. We apply this language to represent norms in the domain of driving, and show that it is adequate to reason on the causes of accidents, as described by car-crash reports.
Target Type Tracking with PCR5 and Dempster's rules: A Comparative Analysis
In this paper we consider and analyze the behavior of two combinational rules for temporal (sequential) attribute data fusion for target type estimation. Our comparative analysis is based on Dempster's fusion rule proposed in Dempster-Shafer Theory (DST) and on the Proportional Conflict Redistribution rule no. 5 (PCR5) recently proposed in Dezert-Smarandache Theory (DSmT). We show through very simple scenario and Monte-Carlo simulation, how PCR5 allows a very efficient Target Type Tracking and reduces drastically the latency delay for correct Target Type decision with respect to Demspter's rule. For cases presenting some short Target Type switches, Demspter's rule is proved to be unable to detect the switches and thus to track correctly the Target Type changes. The approach proposed here is totally new, efficient and promising to be incorporated in real-time Generalized Data Association - Multi Target Tracking systems (GDA-MTT) and provides an important result on the behavior of PCR5 with respect to Dempster's rule. The MatLab source code is provided in
Fusion of qualitative beliefs using DSmT
This paper introduces the notion of qualitative belief assignment to model beliefs of human experts expressed in natural language (with linguistic labels). We show how qualitative beliefs can be efficiently combined using an extension of Dezert-Smarandache Theory (DSmT) of plausible and paradoxical quantitative reasoning to qualitative reasoning. We propose a new arithmetic on linguistic labels which allows a direct extension of classical DSm fusion rule or DSm Hybrid rules. An approximate qualitative PCR5 rule is also proposed jointly with a Qualitative Average Operator. We also show how crisp or interval mappings can be used to deal indirectly with linguistic labels. A very simple example is provided to illustrate our qualitative fusion rules.
An Introduction to the DSm Theory for the Combination of Paradoxical, Uncertain, and Imprecise Sources of Information
The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, developed for dealing with imprecise, uncertain and paradoxical sources of information. We focus our presentation here rather on the foundations of DSmT, and on the two important new rules of combination, than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout the presentation to show the efficiency and the generality of this new approach.
Relation Variables in Qualitative Spatial Reasoning
We study an alternative to the prevailing approach to modelling qualitative spatial reasoning (QSR) problems as constraint satisfaction problems. In the standard approach, a relation between objects is a constraint whereas in the alternative approach it is a variable. The relation-variable approach greatly simplifies integration and implementation of QSR. To substantiate this point, we discuss several QSR algorithms from the literature which in the relation-variable approach reduce to the customary constraint propagation algorithm enforcing generalised arc-consistency.
Using Sets of Probability Measures to Represent Uncertainty
I explore the use of sets of probability measures as a representation of uncertainty.
A State-Based Regression Formulation for Domains with Sensing Actions<br> and Incomplete Information
We present a state-based regression function for planning domains where an agent does not have complete information and may have sensing actions. We consider binary domains and employ a three-valued characterization of domains with sensing actions to define the regression function. We prove the soundness and completeness of our regression formulation with respect to the definition of progression. More specifically, we show that (i) a plan obtained through regression for a planning problem is indeed a progression solution of that planning problem, and that (ii) for each plan found through progression, using regression one obtains that plan or an equivalent one.
Semantic Description of Parameters in Web Service Annotations
A modification of OWL-S regarding parameter description is proposed. It is strictly based on Description Logic. In addition to class description of parameters it also allows the modelling of relations between parameters and the precise description of the size of data to be supplied to a service. In particular, it solves two major issues identified within current proposals for a Semantic Web Service annotation standard.
The ALVIS Format for Linguistically Annotated Documents
The paper describes the ALVIS annotation format designed for the indexing of large collections of documents in topic-specific search engines. This paper is exemplified on the biological domain and on MedLine abstracts, as developing a specialized search engine for biologists is one of the ALVIS case studies. The ALVIS principle for linguistic annotations is based on existing works and standard propositions. We made the choice of stand-off annotations rather than inserted mark-up. Annotations are encoded as XML elements which form the linguistic subsection of the document record.
Modular self-organization
The aim of this paper is to provide a sound framework for addressing a difficult problem: the automatic construction of an autonomous agent's modular architecture. We combine results from two apparently uncorrelated domains: Autonomous planning through Markov Decision Processes and a General Data Clustering Approach using a kernel-like method. Our fundamental idea is that the former is a good framework for addressing autonomy whereas the latter allows to tackle self-organizing problems.
A Typed Hybrid Description Logic Programming Language with Polymorphic Order-Sorted DL-Typed Unification for Semantic Web Type Systems
In this paper we elaborate on a specific application in the context of hybrid description logic programs (hybrid DLPs), namely description logic Semantic Web type systems (DL-types) which are used for term typing of LP rules based on a polymorphic, order-sorted, hybrid DL-typed unification as procedural semantics of hybrid DLPs. Using Semantic Web ontologies as type systems facilitates interchange of domain-independent rules over domain boundaries via dynamically typing and mapping of explicitly defined type ontologies.
Why did the accident happen? A norm-based reasoning approach
In this paper we describe an architecture of a system that answer the question : Why did the accident happen? from the textual description of an accident. We present briefly the different parts of the architecture and then we describe with more detail the semantic part of the system i.e. the part in which the norm-based reasoning is performed on the explicit knowlege extracted from the text.
Une expérience de sémantique inférentielle
We develop a system which must be able to perform the same inferences that a human reader of an accident report can do and more particularly to determine the apparent causes of the accident. We describe the general framework in which we are situated, linguistic and semantic levels of the analysis and the inference rules used by the system.
Farthest-Point Heuristic based Initialization Methods for K-Modes Clustering
The k-modes algorithm has become a popular technique in solving categorical data clustering problems in different application domains. However, the algorithm requires random selection of initial points for the clusters. Different initial points often lead to considerable distinct clustering results. In this paper we present an experimental study on applying a farthest-point heuristic based initialization method to k-modes clustering to improve its performance. Experiments show that new initialization method leads to better clustering accuracy than random selection initialization method for k-modes clustering.
Comparing Typical Opening Move Choices Made by Humans and Chess Engines
The opening book is an important component of a chess engine, and thus computer chess programmers have been developing automated methods to improve the quality of their books. For chess, which has a very rich opening theory, large databases of high-quality games can be used as the basis of an opening book, from which statistics relating to move choices from given positions can be collected. In order to find out whether the opening books used by modern chess engines in machine versus machine competitions are ``comparable'' to those used by chess players in human versus human competitions, we carried out analysis on 26 test positions using statistics from two opening books one compiled from humans' games and the other from machines' games. Our analysis using several nonparametric measures, shows that, overall, there is a strong association between humans' and machines' choices of opening moves when using a book to guide their choices.
Local approximate inference algorithms
We present a new local approximation algorithm for computing Maximum a Posteriori (MAP) and log-partition function for arbitrary exponential family distribution represented by a finite-valued pair-wise Markov random field (MRF), say $G$. Our algorithm is based on decomposition of $G$ into {\em appropriately} chosen small components; then computing estimates locally in each of these components and then producing a {\em good} global solution. We show that if the underlying graph $G$ either excludes some finite-sized graph as its minor (e.g. Planar graph) or has low doubling dimension (e.g. any graph with {\em geometry}), then our algorithm will produce solution for both questions within {\em arbitrary accuracy}. We present a message-passing implementation of our algorithm for MAP computation using self-avoiding walk of graph. In order to evaluate the computational cost of this implementation, we derive novel tight bounds on the size of self-avoiding walk tree for arbitrary graph. As a consequence of our algorithmic result, we show that the normalized log-partition function (also known as free-energy) for a class of {\em regular} MRFs will converge to a limit, that is computable to an arbitrary accuracy.
Constant for associative patterns ensemble
Creation procedure of associative patterns ensemble in terms of formal logic with using neural net-work (NN) model is formulated. It is shown that the associative patterns set is created by means of unique procedure of NN work which having individual parameters of entrance stimulus transformation. It is ascer-tained that the quantity of the selected associative patterns possesses is a constant.
Adaptation Knowledge Discovery from a Case Base
In case-based reasoning, the adaptation step depends in general on domain-dependent knowledge, which motivates studies on adaptation knowledge acquisition (AKA). CABAMAKA is an AKA system based on principles of knowledge discovery from databases. This system explores the variations within the case base to elicit adaptation knowledge. It has been successfully tested in an application of case-based decision support to breast cancer treatment.
Decentralized Failure Diagnosis of Stochastic Discrete Event Systems
Recently, the diagnosability of {\it stochastic discrete event systems} (SDESs) was investigated in the literature, and, the failure diagnosis considered was {\it centralized}. In this paper, we propose an approach to {\it decentralized} failure diagnosis of SDESs, where the stochastic system uses multiple local diagnosers to detect failures and each local diagnoser possesses its own information. In a way, the centralized failure diagnosis of SDESs can be viewed as a special case of the decentralized failure diagnosis presented in this paper with only one projection. The main contributions are as follows: (1) We formalize the notion of codiagnosability for stochastic automata, which means that a failure can be detected by at least one local stochastic diagnoser within a finite delay. (2) We construct a codiagnoser from a given stochastic automaton with multiple projections, and the codiagnoser associated with the local diagnosers is used to test codiagnosability condition of SDESs. (3) We deal with a number of basic properties of the codiagnoser. In particular, a necessary and sufficient condition for the codiagnosability of SDESs is presented. (4) We give a computing method in detail to check whether codiagnosability is violated. And (5) some examples are described to illustrate the applications of the codiagnosability and its computing method.
DSmT: A new paradigm shift for information fusion
The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been and still remains of primal importance for the development of reliable information fusion systems. In this short survey paper, we present the theory of plausible and paradoxical reasoning, known as DSmT (Dezert-Smarandache Theory) in literature, developed for dealing with imprecise, uncertain and potentially highly conflicting sources of information. DSmT is a new paradigm shift for information fusion and recent publications have shown the interest and the potential ability of DSmT to solve fusion problems where Dempster's rule used in Dempster-Shafer Theory (DST) provides counter-intuitive results or fails to provide useful result at all. This paper is focused on the foundations of DSmT and on its main rules of combination (classic, hybrid and Proportional Conflict Redistribution rules). Shafer's model on which is based DST appears as a particular and specific case of DSm hybrid model which can be easily handled by DSmT as well. Several simple but illustrative examples are given throughout this paper to show the interest and the generality of this new theory.
The Reaction RuleML Classification of the Event / Action / State Processing and Reasoning Space
Reaction RuleML is a general, practical, compact and user-friendly XML-serialized language for the family of reaction rules. In this white paper we give a review of the history of event / action /state processing and reaction rule approaches and systems in different domains, define basic concepts and give a classification of the event, action, state processing and reasoning space as well as a discussion of relevant / related work
Fuzzy Logic Classification of Imaging Laser Desorption Fourier Transform Mass Spectrometry Data
A fuzzy logic based classification engine has been developed for classifying mass spectra obtained with an imaging internal source Fourier transform mass spectrometer (I^2LD-FTMS). Traditionally, an operator uses the relative abundance of ions with specific mass-to-charge (m/z) ratios to categorize spectra. An operator does this by comparing the spectrum of m/z versus abundance of an unknown sample against a library of spectra from known samples. Automated positioning and acquisition allow I^2LD-FTMS to acquire data from very large grids, this would require classification of up to 3600 spectrum per hour to keep pace with the acquisition. The tedious job of classifying numerous spectra generated in an I^2LD-FTMS imaging application can be replaced by a fuzzy rule base if the cues an operator uses can be encapsulated. We present the translation of linguistic rules to a fuzzy classifier for mineral phases in basalt. This paper also describes a method for gathering statistics on ions, which are not currently used in the rule base, but which may be candidates for making the rule base more accurate and complete or to form new rule bases based on data obtained from known samples. A spatial method for classifying spectra with low membership values, based on neighboring sample classifications, is also presented.
A Neutrosophic Description Logic
Description Logics (DLs) are appropriate, widely used, logics for managing structured knowledge. They allow reasoning about individuals and concepts, i.e. set of individuals with common properties. Typically, DLs are limited to dealing with crisp, well defined concepts. That is, concepts for which the problem whether an individual is an instance of it is yes/no question. More often than not, the concepts encountered in the real world do not have a precisely defined criteria of membership: we may say that an individual is an instance of a concept only to a certain degree, depending on the individual's properties. The DLs that deal with such fuzzy concepts are called fuzzy DLs. In order to deal with fuzzy, incomplete, indeterminate and inconsistent concepts, we need to extend the fuzzy DLs, combining the neutrosophic logic with a classical DL. In particular, concepts become neutrosophic (here neutrosophic means fuzzy, incomplete, indeterminate, and inconsistent), thus reasoning about neutrosophic concepts is supported. We'll define its syntax, its semantics, and describe its properties.
Genetic Programming for Kernel-based Learning with Co-evolving Subsets Selection
Support Vector Machines (SVMs) are well-established Machine Learning (ML) algorithms. They rely on the fact that i) linear learning can be formalized as a well-posed optimization problem; ii) non-linear learning can be brought into linear learning thanks to the kernel trick and the mapping of the initial search space onto a high dimensional feature space. The kernel is designed by the ML expert and it governs the efficiency of the SVM approach. In this paper, a new approach for the automatic design of kernels by Genetic Programming, called the Evolutionary Kernel Machine (EKM), is presented. EKM combines a well-founded fitness function inspired from the margin criterion, and a co-evolution framework ensuring the computational scalability of the approach. Empirical validation on standard ML benchmark demonstrates that EKM is competitive using state-of-the-art SVMs with tuned hyper-parameters.
Functional Brain Imaging with Multi-Objective Multi-Modal Evolutionary Optimization
Functional brain imaging is a source of spatio-temporal data mining problems. A new framework hybridizing multi-objective and multi-modal optimization is proposed to formalize these data mining problems, and addressed through Evolutionary Computation (EC). The merits of EC for spatio-temporal data mining are demonstrated as the approach facilitates the modelling of the experts' requirements, and flexibly accommodates their changing goals.
A Generic Global Constraint based on MDDs
The paper suggests the use of Multi-Valued Decision Diagrams (MDDs) as the supporting data structure for a generic global constraint. We give an algorithm for maintaining generalized arc consistency (GAC) on this constraint that amortizes the cost of the GAC computation over a root-to-terminal path in the search tree. The technique used is an extension of the GAC algorithm for the regular language constraint on finite length input. Our approach adds support for skipped variables, maintains the reduced property of the MDD dynamically and provides domain entailment detection. Finally we also show how to adapt the approach to constraint types that are closely related to MDDs, such as AOMDDs and Case DAGs.
Conscious Intelligent Systems - Part 1 : I X I
Did natural consciousness and intelligent systems arise out of a path that was co-evolutionary to evolution? Can we explain human self-consciousness as having risen out of such an evolutionary path? If so how could it have been? In this first part of a two-part paper (titled IXI), we take a learning system perspective to the problem of consciousness and intelligent systems, an approach that may look unseasonable in this age of fMRI's and high tech neuroscience. We posit conscious intelligent systems in natural environments and wonder how natural factors influence their design paths. Such a perspective allows us to explain seamlessly a variety of natural factors, factors ranging from the rise and presence of the human mind, man's sense of I, his self-consciousness and his looping thought processes to factors like reproduction, incubation, extinction, sleep, the richness of natural behavior, etc. It even allows us to speculate on a possible human evolution scenario and other natural phenomena.
Conscious Intelligent Systems - Part II - Mind, Thought, Language and Understanding
This is the second part of a paper on Conscious Intelligent Systems. We use the understanding gained in the first part (Conscious Intelligent Systems Part 1: IXI (arxiv id cs.AI/0612056)) to look at understanding. We see how the presence of mind affects understanding and intelligent systems; we see that the presence of mind necessitates language. The rise of language in turn has important effects on understanding. We discuss the humanoid question and how the question of self-consciousness (and by association mind/thought/language) would affect humanoids too.
Interactive Configuration by Regular String Constraints
A product configurator which is complete, backtrack free and able to compute the valid domains at any state of the configuration can be constructed by building a Binary Decision Diagram (BDD). Despite the fact that the size of the BDD is exponential in the number of variables in the worst case, BDDs have proved to work very well in practice. Current BDD-based techniques can only handle interactive configuration with small finite domains. In this paper we extend the approach to handle string variables constrained by regular expressions. The user is allowed to change the strings by adding letters at the end of the string. We show how to make a data structure that can perform fast valid domain computations given some assignment on the set of string variables. We first show how to do this by using one large DFA. Since this approach is too space consuming to be of practical use, we construct a data structure that simulates the large DFA and in most practical cases are much more space efficient. As an example a configuration problem on $n$ string variables with only one solution in which each string variable is assigned to a value of length of $k$ the former structure will use $\Omega(k^n)$ space whereas the latter only need $O(kn)$. We also show how this framework easily can be combined with the recent BDD techniques to allow both boolean, integer and string variables in the configuration problem.
Truncating the loop series expansion for Belief Propagation
Recently, M. Chertkov and V.Y. Chernyak derived an exact expression for the partition sum (normalization constant) corresponding to a graphical model, which is an expansion around the Belief Propagation solution. By adding correction terms to the BP free energy, one for each "generalized loop" in the factor graph, the exact partition sum is obtained. However, the usually enormous number of generalized loops generally prohibits summation over all correction terms. In this article we introduce Truncated Loop Series BP (TLSBP), a particular way of truncating the loop series of M. Chertkov and V.Y. Chernyak by considering generalized loops as compositions of simple loops. We analyze the performance of TLSBP in different scenarios, including the Ising model, regular random graphs and on Promedas, a large probabilistic medical diagnostic system. We show that TLSBP often improves upon the accuracy of the BP solution, at the expense of increased computation time. We also show that the performance of TLSBP strongly depends on the degree of interaction between the variables. For weak interactions, truncating the series leads to significant improvements, whereas for strong interactions it can be ineffective, even if a high number of terms is considered.
Attribute Value Weighting in K-Modes Clustering
In this paper, the traditional k-modes clustering algorithm is extended by weighting attribute value matches in dissimilarity computation. The use of attribute value weighting technique makes it possible to generate clusters with stronger intra-similarities, and therefore achieve better clustering performance. Experimental results on real life datasets show that these value weighting based k-modes algorithms are superior to the standard k-modes algorithm with respect to clustering accuracy.
Structure and Problem Hardness: Goal Asymmetry and DPLL Proofs in<br> SAT-Based Planning
In Verification and in (optimal) AI Planning, a successful method is to formulate the application as boolean satisfiability (SAT), and solve it with state-of-the-art DPLL-based procedures. There is a lack of understanding of why this works so well. Focussing on the Planning context, we identify a form of problem structure concerned with the symmetrical or asymmetrical nature of the cost of achieving the individual planning goals. We quantify this sort of structure with a simple numeric parameter called AsymRatio, ranging between 0 and 1. We run experiments in 10 benchmark domains from the International Planning Competitions since 2000; we show that AsymRatio is a good indicator of SAT solver performance in 8 of these domains. We then examine carefully crafted synthetic planning domains that allow control of the amount of structure, and that are clean enough for a rigorous analysis of the combinatorial search space. The domains are parameterized by size, and by the amount of structure. The CNFs we examine are unsatisfiable, encoding one planning step less than the length of the optimal plan. We prove upper and lower bounds on the size of the best possible DPLL refutations, under different settings of the amount of structure, as a function of size. We also identify the best possible sets of branching variables (backdoors). With minimum AsymRatio, we prove exponential lower bounds, and identify minimal backdoors of size linear in the number of variables. With maximum AsymRatio, we identify logarithmic DPLL refutations (and backdoors), showing a doubly exponential gap between the two structural extreme cases. The reasons for this behavior -- the proof arguments -- illuminate the prototypical patterns of structure causing the empirical behavior observed in the competition benchmarks.
Uniform and Partially Uniform Redistribution Rules
This short paper introduces two new fusion rules for combining quantitative basic belief assignments. These rules although very simple have not been proposed in literature so far and could serve as useful alternatives because of their low computation cost with respect to the recent advanced Proportional Conflict Redistribution rules developed in the DSmT framework.
Generic Global Constraints based on MDDs
Constraint Programming (CP) has been successfully applied to both constraint satisfaction and constraint optimization problems. A wide variety of specialized global constraints provide critical assistance in achieving a good model that can take advantage of the structure of the problem in the search for a solution. However, a key outstanding issue is the representation of 'ad-hoc' constraints that do not have an inherent combinatorial nature, and hence are not modeled well using narrowly specialized global constraints. We attempt to address this issue by considering a hybrid of search and compilation. Specifically we suggest the use of Reduced Ordered Multi-Valued Decision Diagrams (ROMDDs) as the supporting data structure for a generic global constraint. We give an algorithm for maintaining generalized arc consistency (GAC) on this constraint that amortizes the cost of the GAC computation over a root-to-leaf path in the search tree without requiring asymptotically more space than used for the MDD. Furthermore we present an approach for incrementally maintaining the reduced property of the MDD during the search, and show how this can be used for providing domain entailment detection. Finally we discuss how to apply our approach to other similar data structures such as AOMDDs and Case DAGs. The technique used can be seen as an extension of the GAC algorithm for the regular language constraint on finite length input.
Redesigning Decision Matrix Method with an indeterminacy-based inference process
For academics and practitioners concerned with computers, business and mathematics, one central issue is supporting decision makers. In this paper, we propose a generalization of Decision Matrix Method (DMM), using Neutrosophic logic. It emerges as an alternative to the existing logics and it represents a mathematical model of uncertainty and indeterminacy. This paper proposes the Neutrosophic Decision Matrix Method as a more realistic tool for decision making. In addition, a de-neutrosophication process is included.
Modelling Complexity in Musical Rhythm
This paper constructs a tree structure for the music rhythm using the L-system. It models the structure as an automata and derives its complexity. It also solves the complexity for the L-system. This complexity can resolve the similarity between trees. This complexity serves as a measure of psychological complexity for rhythms. It resolves the music complexity of various compositions including the Mozart effect K488. Keyword: music perception, psychological complexity, rhythm, L-system, automata, temporal associative memory, inverse problem, rewriting rule, bracketed string, tree similarity
Space-contained conflict revision, for geographic information
Using qualitative reasoning with geographic information, contrarily, for instance, with robotics, looks not only fastidious (i.e.: encoding knowledge Propositional Logics PL), but appears to be computational complex, and not tractable at all, most of the time. However, knowledge fusion or revision, is a common operation performed when users merge several different data sets in a unique decision making process, without much support. Introducing logics would be a great improvement, and we propose in this paper, means for deciding -a priori- if one application can benefit from a complete revision, under only the assumption of a conjecture that we name the "containment conjecture", which limits the size of the minimal conflicts to revise. We demonstrate that this conjecture brings us the interesting computational property of performing a not-provable but global, revision, made of many local revisions, at a tractable size. We illustrate this approach on an application.
Case Base Mining for Adaptation Knowledge Acquisition
In case-based reasoning, the adaptation of a source case in order to solve the target problem is at the same time crucial and difficult to implement. The reason for this difficulty is that, in general, adaptation strongly depends on domain-dependent knowledge. This fact motivates research on adaptation knowledge acquisition (AKA). This paper presents an approach to AKA based on the principles and techniques of knowledge discovery from databases and data-mining. It is implemented in CABAMAKA, a system that explores the variations within the case base to elicit adaptation knowledge. This system has been successfully tested in an application of case-based reasoning to decision support in the domain of breast cancer treatment.
Calculating Valid Domains for BDD-Based Interactive Configuration
In these notes we formally describe the functionality of Calculating Valid Domains from the BDD representing the solution space of valid configurations. The formalization is largely based on the CLab configuration framework.
A study of structural properties on profiles HMMs
Motivation: Profile hidden Markov Models (pHMMs) are a popular and very useful tool in the detection of the remote homologue protein families. Unfortunately, their performance is not always satisfactory when proteins are in the 'twilight zone'. We present HMMER-STRUCT, a model construction algorithm and tool that tries to improve pHMM performance by using structural information while training pHMMs. As a first step, HMMER-STRUCT constructs a set of pHMMs. Each pHMM is constructed by weighting each residue in an aligned protein according to a specific structural property of the residue. Properties used were primary, secondary and tertiary structures, accessibility and packing. HMMER-STRUCT then prioritizes the results by voting. Results: We used the SCOP database to perform our experiments. Throughout, we apply leave-one-family-out cross-validation over protein superfamilies. First, we used the MAMMOTH-mult structural aligner to align the training set proteins. Then, we performed two sets of experiments. In a first experiment, we compared structure weighted models against standard pHMMs and against each other. In a second experiment, we compared the voting model against individual pHMMs. We compare method performance through ROC curves and through Precision/Recall curves, and assess significance through the paired two tailed t-test. Our results show significant performance improvements of all structurally weighted models over default HMMER, and a significant improvement in sensitivity of the combined models over both the original model and the structurally weighted models.
Bayesian approach to rough set
This paper proposes an approach to training rough set models using Bayesian framework trained using Markov Chain Monte Carlo (MCMC) method. The prior probabilities are constructed from the prior knowledge that good rough set models have fewer rules. Markov Chain Monte Carlo sampling is conducted through sampling in the rough set granule space and Metropolis algorithm is used as an acceptance criteria. The proposed method is tested to estimate the risk of HIV given demographic data. The results obtained shows that the proposed approach is able to achieve an average accuracy of 58% with the accuracy varying up to 66%. In addition the Bayesian rough set give the probabilities of the estimated HIV status as well as the linguistic rules describing how the demographic parameters drive the risk of HIV.
Comparing Robustness of Pairwise and Multiclass Neural-Network Systems for Face Recognition
Noise, corruptions and variations in face images can seriously hurt the performance of face recognition systems. To make such systems robust, multiclass neuralnetwork classifiers capable of learning from noisy data have been suggested. However on large face data sets such systems cannot provide the robustness at a high level. In this paper we explore a pairwise neural-network system as an alternative approach to improving the robustness of face recognition. In our experiments this approach is shown to outperform the multiclass neural-network system in terms of the predictive accuracy on the face images corrupted by noise.
Ensemble Learning for Free with Evolutionary Algorithms ?
Evolutionary Learning proceeds by evolving a population of classifiers, from which it generally returns (with some notable exceptions) the single best-of-run classifier as final result. In the meanwhile, Ensemble Learning, one of the most efficient approaches in supervised Machine Learning for the last decade, proceeds by building a population of diverse classifiers. Ensemble Learning with Evolutionary Computation thus receives increasing attention. The Evolutionary Ensemble Learning (EEL) approach presented in this paper features two contributions. First, a new fitness function, inspired by co-evolution and enforcing the classifier diversity, is presented. Further, a new selection criterion based on the classification margin is proposed. This criterion is used to extract the classifier ensemble from the final population only (Off-line) or incrementally along evolution (On-line). Experiments on a set of benchmark problems show that Off-line outperforms single-hypothesis evolutionary learning and state-of-art Boosting and generates smaller classifier ensembles.