ProPEX-RAG / README.md
tejas-sarnaik's picture
Update README.md
34d082b verified
---
tags:
- graph-rag
- rag
- large-language-models
- knowledge-graph
- prompt-engineering
license: mit
paperswithcode_id: propex-rag
arxiv: 2511.01802
---
<h1 align="left">PROPEX-RAG: Enhanced GraphRAG using Prompt Driven Prompt Execution</h1>
[<img align="center" src="https://img.shields.io/badge/🤗 Dataset-ProPEX--RAG-yellow" />](https://huggingface.co/datasets/tejas-sarnaik/ProPEX-RAG/tree/main)
[<img align="center" src="https://img.shields.io/badge/arXiv-ProPEX--RAG-b31b1b" />](https://arxiv.org/abs/2511.01802v1)
[<img align="center" src="https://img.shields.io/badge/GitHub-ProPEX--RAG-blue" />](https://github.com/tejas-sarnaik/ProPEX-RAG.git)
### ProPEX-RAG is a prompt-driven, entity-guided RAG framework that emphasizes the role of prompt design in improving retrieval and reasoning across large knowledge graphs.
Our approach unifies symbolic graph construction with prompt-aware online retrieval, enabling precise entity extraction, fact filtering, and multi-hop passage re-ranking.
This design achieves high performance on complex QA tasks while maintaining scalability and efficiency, offering a practical and interpretable alternative to existing graph-based RAG systems.
#### Check out our papers to learn more:
* [**PROPEX-RAG: Enhanced GraphRAG using Prompt Driven Prompt Execution**](https://arxiv.org/abs/2511.01802v1) [PReMI '25].
----
## Contact
Questions or issues? File an issue or contact
[Tejas Sarnaik](mailto:[email protected])
## Citation
If you find this work useful, please consider citing our papers:
### ProPEX-RAG
```
@article{sarnaik2025propex,
title = {PROPEX-RAG: Enhanced GraphRAG using Prompt-Driven Prompt Execution},
author = {Sarnaik, Tejas and Shah, Manan and Hegde, Ravi},
journal = {arXiv preprint arXiv:2511.01802},
year = {2025}
```