Dream-Coder GGUF Q8_0 Quantization Guide

This guide is specifically designed for GGUF Q8_0 quantization of the Dream-Coder v0-Instruct-7B model.

Quick Start

1. Environment Setup

# 1. Clone and compile llama.cpp
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make -j$(nproc)

# 2. Install Python dependencies
pip install transformers>=4.46.2 torch safetensors numpy

2. Execute Quantization

Method 1: Use the provided script

# Set llama.cpp path
export LLAMA_CPP_PATH=/path/to/llama.cpp

# Run quantization script
./quantize_example.sh

Method 2: Manual execution

python quantize_dream_q8_0.py \
    --model_path /path/to/Dream-Coder-v0-Instruct-7B \
    --llama_cpp_path /path/to/llama.cpp \
    --output_dir ./gguf_output \
    --keep_f16

3. Parameter Description

  • --model_path: Dream-Coder model path (default: current directory)
  • --llama_cpp_path: llama.cpp project path (required)
  • --output_dir: Output directory (default: ./gguf_output)
  • --keep_f16: Keep F16 intermediate files

Architecture Adaptation

Dream-Coder Special Configuration Handling

This quantization script specifically handles the following special configurations of Dream-Coder:

  1. Architecture Mapping: DreamModel โ†’ LlamaForCausalLM (compatibility)

  2. Special Token IDs:

    • mask_token_id: 151666 (critical diffusion token)
    • bos_token_id: 151665
    • eos_token_id: 151643
    • pad_token_id: 151643
  3. Model Parameters:

    • Vocabulary size: 152,064
    • Hidden dimension: 3,584
    • Attention heads: 28 (4 key-value heads)
    • Layers: 28
    • Context length: 32,768
  4. Diffusion Features:

    • Preserve mask_token_id metadata
    • RoPE theta: 1,000,000.0
    • Activation function: SiLU

Output Description

File Structure

gguf_output/
โ”œโ”€โ”€ dream-coder-7b-f16.gguf      # F16 intermediate file (optionally kept)
โ””โ”€โ”€ dream-coder-7b-q8_0.gguf     # Final Q8_0 quantized file

Performance Expectations

Metric Original (BF16) Q8_0
Memory Usage ~14GB ~6.7GB
Inference Speed 1.0x 1.2-1.5x
Precision Loss 0% <0.1%

Usage

llama.cpp Command Line

Since Dream-Coder is a diffusion-based model, you need to use the dedicated llama-diffusion-cli tool:

# Basic usage
./llama.cpp/build/bin/llama-diffusion-cli \
    -m gguf_output/dream-coder-7b-q8_0.gguf \
    -p "def quicksort(arr):" \
    -n 512 \
    -c 2048 \
    --diffusion-steps 128

# Advanced parameters
./llama.cpp/build/bin/llama-diffusion-cli \
    -m gguf_output/dream-coder-7b-q8_0.gguf \
    -p "Write a binary search function" \
    -n 256 \
    -c 2048 \
    --temp 0.1 \
    --top-p 0.95 \
    --repeat-penalty 1.1 \
    --diffusion-steps 128 \
    --diffusion-algorithm 4 \
    --diffusion-alg-temp 0.0 \
    -t 8

# Visualize generation process
./llama.cpp/build/bin/llama-diffusion-cli \
    -m gguf_output/dream-coder-7b-q8_0.gguf \
    -p "def fibonacci(n):" \
    -n 256 \
    --diffusion-steps 64 \
    --diffusion-visual

Diffusion Parameter Description

  • --diffusion-steps N: Diffusion denoising steps (default: 128)
  • --diffusion-algorithm N: Algorithm selection:
    • 0 = ORIGIN (original algorithm)
    • 1 = ENTROPY_BASED (entropy-based)
    • 2 = MARGIN_BASED (margin-based)
    • 3 = RANDOM (random)
    • 4 = LOW_CONFIDENCE (low confidence, default)
  • --diffusion-alg-temp F: Algorithm temperature (default: 0.0)
  • --diffusion-visual: Enable visualization mode, show generation progress
  • --diffusion-eps F: Time step epsilon value

Python (llama-cpp-python)

pip install llama-cpp-python
from llama_cpp import Llama

# Load model
llm = Llama(
    model_path="gguf_output/dream-coder-7b-q8_0.gguf",
    n_ctx=2048,
    n_threads=8,
    n_gpu_layers=0  # CPU inference, set >0 to enable GPU acceleration
)

# Generate code
output = llm(
    "def fibonacci(n):",
    max_tokens=512,
    temperature=0.1,
    top_p=0.95,
    repeat_penalty=1.1
)

print(output['choices'][0]['text'])

With GPU Acceleration

If compiled with CUDA support:

# Compile CUDA version
cd llama.cpp
make clean
make LLAMA_CUBLAS=1 -j$(nproc)

# Use GPU acceleration (partial layers)
./build/bin/llama-diffusion-cli \
    -m gguf_output/dream-coder-7b-q8_0.gguf \
    -p "def quicksort(arr):" \
    -n 512 \
    --diffusion-steps 128 \
    -ngl 20  # Number of GPU layers

Troubleshooting

Common Issues

  1. Conversion Failure:

    • Ensure llama.cpp is compiled correctly
    • Check Python dependency versions
    • Verify model file integrity
  2. Quantization Failure:

    • Check disk space (~20GB temporary space needed)
    • Ensure sufficient memory (32GB+ recommended)
  3. Inference Errors:

    • Verify GGUF file integrity
    • Check context length settings
    • Try reducing n_gpu_layers

Model Validation

# File integrity check
ls -lh gguf_output/dream-coder-7b-q8_0.gguf

# Simple inference test  
echo "def hello():" | ./llama.cpp/build/bin/llama-diffusion-cli -m gguf_output/dream-coder-7b-q8_0.gguf -n 20 --diffusion-steps 64

Performance Optimization

CPU Optimization

  • Use -t parameter to set thread count
  • Enable AVX2/AVX512 compilation options
  • Adjust batch size (-b parameter)

GPU Optimization

  • Use CUDA/OpenCL compilation
  • Adjust GPU layer count (-ngl)
  • Monitor GPU memory usage

Memory Optimization

  • Use --mmap to enable memory mapping
  • Adjust --mlock parameter
  • Set appropriate context length

Important Notes

  1. Diffusion Features: Dream-Coder uses diffusion generation, different from traditional autoregressive models
  2. Dedicated Tool: Must use llama-diffusion-cli instead of the regular main tool
  3. Special Tokens: Maintain correct handling of mask_token_id (151666)
  4. Context Length: Supports maximum 32K tokens, but 2K-4K recommended for optimal performance
  5. Generation Parameters: Recommend using lower temperature (0.1-0.3) and appropriate top_p (0.9-0.95)
  6. Diffusion Steps: Recommend 64-128 steps, more steps may improve quality but increase inference time

Technical Support

If you encounter issues, please check:

  1. llama.cpp version and compilation status
  2. Python dependency version compatibility
  3. Model file integrity
  4. System resources (memory/disk)

For more information, refer to:

Downloads last month
45
GGUF
Model size
8B params
Architecture
dream
Hardware compatibility
Log In to view the estimation

4-bit

5-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support