Dream-Coder GGUF Q8_0 Quantization Guide
This guide is specifically designed for GGUF Q8_0 quantization of the Dream-Coder v0-Instruct-7B model.
Quick Start
1. Environment Setup
# 1. Clone and compile llama.cpp
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make -j$(nproc)
# 2. Install Python dependencies
pip install transformers>=4.46.2 torch safetensors numpy
2. Execute Quantization
Method 1: Use the provided script
# Set llama.cpp path
export LLAMA_CPP_PATH=/path/to/llama.cpp
# Run quantization script
./quantize_example.sh
Method 2: Manual execution
python quantize_dream_q8_0.py \
--model_path /path/to/Dream-Coder-v0-Instruct-7B \
--llama_cpp_path /path/to/llama.cpp \
--output_dir ./gguf_output \
--keep_f16
3. Parameter Description
--model_path: Dream-Coder model path (default: current directory)--llama_cpp_path: llama.cpp project path (required)--output_dir: Output directory (default: ./gguf_output)--keep_f16: Keep F16 intermediate files
Architecture Adaptation
Dream-Coder Special Configuration Handling
This quantization script specifically handles the following special configurations of Dream-Coder:
Architecture Mapping: DreamModel โ LlamaForCausalLM (compatibility)
Special Token IDs:
mask_token_id: 151666 (critical diffusion token)bos_token_id: 151665eos_token_id: 151643pad_token_id: 151643
Model Parameters:
- Vocabulary size: 152,064
- Hidden dimension: 3,584
- Attention heads: 28 (4 key-value heads)
- Layers: 28
- Context length: 32,768
Diffusion Features:
- Preserve
mask_token_idmetadata - RoPE theta: 1,000,000.0
- Activation function: SiLU
- Preserve
Output Description
File Structure
gguf_output/
โโโ dream-coder-7b-f16.gguf # F16 intermediate file (optionally kept)
โโโ dream-coder-7b-q8_0.gguf # Final Q8_0 quantized file
Performance Expectations
| Metric | Original (BF16) | Q8_0 |
|---|---|---|
| Memory Usage | ~14GB | ~6.7GB |
| Inference Speed | 1.0x | 1.2-1.5x |
| Precision Loss | 0% | <0.1% |
Usage
llama.cpp Command Line
Since Dream-Coder is a diffusion-based model, you need to use the dedicated llama-diffusion-cli tool:
# Basic usage
./llama.cpp/build/bin/llama-diffusion-cli \
-m gguf_output/dream-coder-7b-q8_0.gguf \
-p "def quicksort(arr):" \
-n 512 \
-c 2048 \
--diffusion-steps 128
# Advanced parameters
./llama.cpp/build/bin/llama-diffusion-cli \
-m gguf_output/dream-coder-7b-q8_0.gguf \
-p "Write a binary search function" \
-n 256 \
-c 2048 \
--temp 0.1 \
--top-p 0.95 \
--repeat-penalty 1.1 \
--diffusion-steps 128 \
--diffusion-algorithm 4 \
--diffusion-alg-temp 0.0 \
-t 8
# Visualize generation process
./llama.cpp/build/bin/llama-diffusion-cli \
-m gguf_output/dream-coder-7b-q8_0.gguf \
-p "def fibonacci(n):" \
-n 256 \
--diffusion-steps 64 \
--diffusion-visual
Diffusion Parameter Description
--diffusion-steps N: Diffusion denoising steps (default: 128)--diffusion-algorithm N: Algorithm selection:- 0 = ORIGIN (original algorithm)
- 1 = ENTROPY_BASED (entropy-based)
- 2 = MARGIN_BASED (margin-based)
- 3 = RANDOM (random)
- 4 = LOW_CONFIDENCE (low confidence, default)
--diffusion-alg-temp F: Algorithm temperature (default: 0.0)--diffusion-visual: Enable visualization mode, show generation progress--diffusion-eps F: Time step epsilon value
Python (llama-cpp-python)
pip install llama-cpp-python
from llama_cpp import Llama
# Load model
llm = Llama(
model_path="gguf_output/dream-coder-7b-q8_0.gguf",
n_ctx=2048,
n_threads=8,
n_gpu_layers=0 # CPU inference, set >0 to enable GPU acceleration
)
# Generate code
output = llm(
"def fibonacci(n):",
max_tokens=512,
temperature=0.1,
top_p=0.95,
repeat_penalty=1.1
)
print(output['choices'][0]['text'])
With GPU Acceleration
If compiled with CUDA support:
# Compile CUDA version
cd llama.cpp
make clean
make LLAMA_CUBLAS=1 -j$(nproc)
# Use GPU acceleration (partial layers)
./build/bin/llama-diffusion-cli \
-m gguf_output/dream-coder-7b-q8_0.gguf \
-p "def quicksort(arr):" \
-n 512 \
--diffusion-steps 128 \
-ngl 20 # Number of GPU layers
Troubleshooting
Common Issues
Conversion Failure:
- Ensure llama.cpp is compiled correctly
- Check Python dependency versions
- Verify model file integrity
Quantization Failure:
- Check disk space (~20GB temporary space needed)
- Ensure sufficient memory (32GB+ recommended)
Inference Errors:
- Verify GGUF file integrity
- Check context length settings
- Try reducing
n_gpu_layers
Model Validation
# File integrity check
ls -lh gguf_output/dream-coder-7b-q8_0.gguf
# Simple inference test
echo "def hello():" | ./llama.cpp/build/bin/llama-diffusion-cli -m gguf_output/dream-coder-7b-q8_0.gguf -n 20 --diffusion-steps 64
Performance Optimization
CPU Optimization
- Use
-tparameter to set thread count - Enable AVX2/AVX512 compilation options
- Adjust batch size (
-bparameter)
GPU Optimization
- Use CUDA/OpenCL compilation
- Adjust GPU layer count (
-ngl) - Monitor GPU memory usage
Memory Optimization
- Use
--mmapto enable memory mapping - Adjust
--mlockparameter - Set appropriate context length
Important Notes
- Diffusion Features: Dream-Coder uses diffusion generation, different from traditional autoregressive models
- Dedicated Tool: Must use
llama-diffusion-cliinstead of the regularmaintool - Special Tokens: Maintain correct handling of
mask_token_id(151666) - Context Length: Supports maximum 32K tokens, but 2K-4K recommended for optimal performance
- Generation Parameters: Recommend using lower temperature (0.1-0.3) and appropriate top_p (0.9-0.95)
- Diffusion Steps: Recommend 64-128 steps, more steps may improve quality but increase inference time
Technical Support
If you encounter issues, please check:
- llama.cpp version and compilation status
- Python dependency version compatibility
- Model file integrity
- System resources (memory/disk)
For more information, refer to:
- Downloads last month
- 45
Hardware compatibility
Log In
to view the estimation
4-bit
5-bit
8-bit
16-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support