LLaMA 3.1-8B Sentiment Analysis: Cell Phones and Accessories

Fine-tuned LLaMA 3.1-8B-Instruct for sentiment analysis on Amazon product reviews.

Model Description

This model is a QLoRA fine-tuned version of meta-llama/Llama-3.1-8B-Instruct for binary (negative/positive) sentiment classification on Amazon Cell Phones and Accessories reviews.

Training Configuration

Parameter Value
Base Model meta-llama/Llama-3.1-8B-Instruct
Training Phase Baseline
Category Cell Phones and Accessories
Classification 2-class
Training Samples 150,000
Epochs 1
Sequence Length 384 tokens
LoRA Rank (r) 128
LoRA Alpha 32
Quantization 4-bit NF4
Attention SDPA

Performance Metrics

Overall

Metric Score
Accuracy 0.9628 (96.28%)
Macro Precision 0.9641
Macro Recall 0.9625
Macro F1 0.9628

Per-Class

Class Precision Recall F1
Negative 0.9422 0.9870 0.9641
Positive 0.9860 0.9381 0.9614

Confusion Matrix

              Pred Neg  Pred Pos
True Neg       2496        33
True Pos        153      2318

Usage

from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model
base_model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.1-8B-Instruct",
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
model = PeftModel.from_pretrained(base_model, "innerCircuit/llama3-sentiment-Cell-Phones-Accessories-binary-baseline-150k")
tokenizer = AutoTokenizer.from_pretrained("innerCircuit/llama3-sentiment-Cell-Phones-Accessories-binary-baseline-150k")

# Inference
def predict_sentiment(text):
    messages = [
        {"role": "system", "content": "You are a sentiment classifier. Classify as negative or positive. Respond with one word."},
        {"role": "user", "content": text}
    ]
    inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
    outputs = model.generate(inputs, max_new_tokens=5, do_sample=False)
    return tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True).strip()

# Example
print(predict_sentiment("This product is amazing! Best purchase ever."))
# Output: positive

Training Data

Attribute Value
Dataset Amazon Reviews 2023
Category Cell Phones and Accessories
Training Samples 150,000
Evaluation Samples 10,000
Class Balance Equal samples per sentiment class

Research Context

This model is part of a research project investigating LLM poisoning attacks, based on methodologies from Souly et al. (2025). The fine-tuned baseline establishes performance benchmarks prior to introducing adversarial samples.

References

  • Souly, A., Rando, J., et al. (2025). Poisoning attacks on LLMs require a near-constant number of poison samples. arXiv:2510.07192
  • Hou, Y., et al. (2024). Bridging Language and Items for Retrieval and Recommendation. arXiv:2403.03952

Citation

@misc{llama3-sentiment-Cell-Phones-Accessories-baseline,
  author = {Govinda Reddy, Akshay and Pranav},
  title = {LLaMA 3.1 Sentiment Analysis for Amazon Reviews},
  year = {2024},
  publisher = {HuggingFace},
  howpublished = {\url{https://huggingface.co/innerCircuit/llama3-sentiment-Cell-Phones-Accessories-binary-baseline-150k}}
}

License

This model is released under the Llama 3.1 Community License.


Generated: 2025-12-13 22:47:27 UTC

Downloads last month
23
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for innerCircuit/llama3-sentiment-Cell-Phones-Accessories-binary-baseline-150k

Adapter
(1318)
this model

Dataset used to train innerCircuit/llama3-sentiment-Cell-Phones-Accessories-binary-baseline-150k