CI_MA_Detect - Microaggression Detection Model
This model detects microaggressions in text using a fine-tuned DeBERTa architecture.
Model Description
- Model type: DeBERTa for sequence classification
- Task: Binary text classification (microaggression detection)
- Labels:
- LABEL_0: Not a microaggression
- LABEL_1: Microaggression detected
Usage
from transformers import DebertaTokenizer, DebertaForSequenceClassification
import torch
tokenizer = DebertaTokenizer.from_pretrained("jokugeorgin/CI_MA_Detect")
model = DebertaForSequenceClassification.from_pretrained("jokugeorgin/CI_MA_Detect")
text = "You speak good English for someone from there."
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
outputs = model(**inputs)
prediction = torch.argmax(outputs.logits, dim=1)
API Usage
curl https://api-inference.huggingface.co/models/jokugeorgin/CI_MA_Detect \
-H "Authorization: Bearer YOUR_HF_TOKEN" \
-H "Content-Type: application/json" \
-d '{"inputs": "You speak good English for someone from there."}'
Training Data
Custom dataset of microaggression examples and neutral text.
Limitations
- Works best with English text
- May require context for ambiguous statements
- Performance varies with text length and complexity
- Downloads last month
- 8
Space using jokugeorgin/CI_MA_Detect 1
Evaluation results
- Accuracyself-reported0.850