|
|
--- |
|
|
license: apache-2.0 |
|
|
base_model: distilbert-base-uncased |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- wnut_17 |
|
|
metrics: |
|
|
- precision |
|
|
- recall |
|
|
- f1 |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: my_awesome_wnut_model |
|
|
results: |
|
|
- task: |
|
|
name: Token Classification |
|
|
type: token-classification |
|
|
dataset: |
|
|
name: wnut_17 |
|
|
type: wnut_17 |
|
|
config: wnut_17 |
|
|
split: test |
|
|
args: wnut_17 |
|
|
metrics: |
|
|
- name: Precision |
|
|
type: precision |
|
|
value: 0.5720930232558139 |
|
|
- name: Recall |
|
|
type: recall |
|
|
value: 0.34198331788693237 |
|
|
- name: F1 |
|
|
type: f1 |
|
|
value: 0.4280742459396752 |
|
|
- name: Accuracy |
|
|
type: accuracy |
|
|
value: 0.9453636013851482 |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# my_awesome_wnut_model |
|
|
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.3526 |
|
|
- Precision: 0.5721 |
|
|
- Recall: 0.3420 |
|
|
- F1: 0.4281 |
|
|
- Accuracy: 0.9454 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 0.0002 |
|
|
- train_batch_size: 32 |
|
|
- eval_batch_size: 32 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 4 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
|
| No log | 1.0 | 107 | 0.2863 | 0.3981 | 0.3494 | 0.3722 | 0.9328 | |
|
|
| No log | 2.0 | 214 | 0.3438 | 0.5734 | 0.3151 | 0.4067 | 0.9443 | |
|
|
| No log | 3.0 | 321 | 0.3482 | 0.5922 | 0.3216 | 0.4168 | 0.9445 | |
|
|
| No log | 4.0 | 428 | 0.3526 | 0.5721 | 0.3420 | 0.4281 | 0.9454 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.35.0 |
|
|
- Pytorch 2.0.0 |
|
|
- Datasets 2.1.0 |
|
|
- Tokenizers 0.14.1 |
|
|
|