schroneko's picture
e753be2b70344c076d54088b8faa5b7cb787b967c84585af8a9c8a67e4b835e4
370bc31 verified
|
raw
history blame
1.16 kB
metadata
base_model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1
datasets:
  - lmsys/lmsys-chat-1m
  - argilla/magpie-ultra-v0.1
language:
  - en
  - ja
library_name: transformers
license: llama3.1
pipeline_tag: text-generation
tags:
  - mlx
model_type: llama

mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.1-8bit

The Model mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.1-8bit was converted to MLX format from tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1 using mlx-lm version 0.19.0.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.1-8bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)