metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:111476
- loss:CosineSimilarityLoss
base_model: sergeyzh/LaBSE-ru-sts
widget:
- source_sentence: 'трюковый самокат plank 180 белый '
sentences:
- смарт-телевизор 75 sony kd-75x950h
- самокат для трюков плэнк 1.80 м белый
- xiaomi mi 11 8gb 128gb
- source_sentence: 'вейп vaporesso xros '
sentences:
- садовая ограда классика 4 2 м белый
- кухонные весы
- электронная сигарета voopoo drag
- source_sentence: серьги l atelier precieux 1628710
sentences:
- фильтр hepa для пылесоса варис st400
- потолочная люстра майтон nostalgia ceiling chandelier mod048pl-06g
- серьги atelier de bijoux 1628712
- source_sentence: 'мобильный геймпад триггерами x2 '
sentences:
- электроскутер nitro pro milano 750w led
- наушники без проводов мейзу ep52 lite
- геймпад с функцией триггеров x2
- source_sentence: комод 7 рисунком машинки 4 ящика
sentences:
- удлинитель far f 505 d lara выключателем 2 0м
- беззеркальный фотоаппарат nikon z50 kit 16-50mm ilce-7cl красный
- комод 8 с изображением супергероев 6 ящиков
datasets:
- seregadgl/data_cross_gpt_139k
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on sergeyzh/LaBSE-ru-sts
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: eval
type: eval
metrics:
- type: cosine_accuracy
value: 0.9722640832436311
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.630459189414978
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9724366041896361
name: Cosine F1
- type: cosine_f1_threshold
value: 0.5821653008460999
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9647847565278758
name: Cosine Precision
- type: cosine_recall
value: 0.9802107980210798
name: Cosine Recall
- type: cosine_ap
value: 0.9945729266353226
name: Cosine Ap
- type: cosine_mcc
value: 0.9445047865635516
name: Cosine Mcc
SentenceTransformer based on sergeyzh/LaBSE-ru-sts
This is a sentence-transformers model finetuned from sergeyzh/LaBSE-ru-sts on the data_cross_gpt_139k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sergeyzh/LaBSE-ru-sts
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seregadgl/sts_v11")
# Run inference
sentences = [
'комод 7 рисунком машинки 4 ящика',
'комод 8 с изображением супергероев 6 ящиков',
'беззеркальный фотоаппарат nikon z50 kit 16-50mm ilce-7cl красный',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
eval - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9723 |
| cosine_accuracy_threshold | 0.6305 |
| cosine_f1 | 0.9724 |
| cosine_f1_threshold | 0.5822 |
| cosine_precision | 0.9648 |
| cosine_recall | 0.9802 |
| cosine_ap | 0.9946 |
| cosine_mcc | 0.9445 |
Training Details
Training Dataset
data_cross_gpt_139k
- Dataset: data_cross_gpt_139k at 9e1f5ca
- Size: 111,476 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 3 tokens
- mean: 14.84 tokens
- max: 45 tokens
- min: 4 tokens
- mean: 15.64 tokens
- max: 55 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 label нож кухонный 21см синийкухонный нож 22см зелёный0.0блок питания универсальный для мерцающих флэш гирлянд rich led бахрома занавес нить белыйадаптер питания для мигающих led гирлянд "luminous decor" бахрома занавес нить зелёный0.0защитная пленка для apple iphone 6 прозрачнаяprotective film for apple iphone 6 transparent1.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
data_cross_gpt_139k
- Dataset: data_cross_gpt_139k at 9e1f5ca
- Size: 27,870 evaluation samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 3 tokens
- mean: 15.05 tokens
- max: 58 tokens
- min: 4 tokens
- mean: 15.57 tokens
- max: 53 tokens
- min: 0.0
- mean: 0.48
- max: 1.0
- Samples:
sentence1 sentence2 label сумка дорожная складная полет оранжевая bradex td 0599сумка для путешествий складная брадекс orange1.0наушники sennheiser hd 450bt белыйнаушники сенхайзер hd 450bt white1.0перчатки stg al-05-1871 синие серые черные зеленыеполноразмерные xlперчатки stg al-05-1871 blue gray black green full size xl1.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32learning_rate: 4.7459131195420915e-05weight_decay: 0.03196240090522689num_train_epochs: 2warmup_ratio: 0.014344463935915175fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 4.7459131195420915e-05weight_decay: 0.03196240090522689adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.014344463935915175warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | eval_cosine_ap |
|---|---|---|---|---|
| 0.0287 | 100 | 0.189 | - | - |
| 0.0574 | 200 | 0.0695 | - | - |
| 0.0861 | 300 | 0.067 | - | - |
| 0.1148 | 400 | 0.0643 | - | - |
| 0.1435 | 500 | 0.0594 | 0.0549 | 0.9862 |
| 0.1722 | 600 | 0.0565 | - | - |
| 0.2009 | 700 | 0.0535 | - | - |
| 0.2296 | 800 | 0.0506 | - | - |
| 0.2583 | 900 | 0.0549 | - | - |
| 0.2870 | 1000 | 0.0535 | 0.0451 | 0.9888 |
| 0.3157 | 1100 | 0.0492 | - | - |
| 0.3444 | 1200 | 0.0499 | - | - |
| 0.3731 | 1300 | 0.0486 | - | - |
| 0.4018 | 1400 | 0.0458 | - | - |
| 0.4305 | 1500 | 0.0458 | 0.0419 | 0.9877 |
| 0.4592 | 1600 | 0.0502 | - | - |
| 0.4879 | 1700 | 0.045 | - | - |
| 0.5166 | 1800 | 0.0435 | - | - |
| 0.5454 | 1900 | 0.0426 | - | - |
| 0.5741 | 2000 | 0.0422 | 0.0386 | 0.9906 |
| 0.6028 | 2100 | 0.0436 | - | - |
| 0.6315 | 2200 | 0.043 | - | - |
| 0.6602 | 2300 | 0.0432 | - | - |
| 0.6889 | 2400 | 0.0397 | - | - |
| 0.7176 | 2500 | 0.0394 | 0.0357 | 0.9903 |
| 0.7463 | 2600 | 0.039 | - | - |
| 0.7750 | 2700 | 0.0398 | - | - |
| 0.8037 | 2800 | 0.0394 | - | - |
| 0.8324 | 2900 | 0.0426 | - | - |
| 0.8611 | 3000 | 0.0345 | 0.0341 | 0.9921 |
| 0.8898 | 3100 | 0.0361 | - | - |
| 0.9185 | 3200 | 0.0365 | - | - |
| 0.9472 | 3300 | 0.0401 | - | - |
| 0.9759 | 3400 | 0.0391 | - | - |
| 1.0046 | 3500 | 0.0342 | 0.0310 | 0.9928 |
| 1.0333 | 3600 | 0.0267 | - | - |
| 1.0620 | 3700 | 0.0264 | - | - |
| 1.0907 | 3800 | 0.0263 | - | - |
| 1.1194 | 3900 | 0.0248 | - | - |
| 1.1481 | 4000 | 0.0282 | 0.0301 | 0.9928 |
| 1.1768 | 4100 | 0.0279 | - | - |
| 1.2055 | 4200 | 0.0258 | - | - |
| 1.2342 | 4300 | 0.0248 | - | - |
| 1.2629 | 4400 | 0.0289 | - | - |
| 1.2916 | 4500 | 0.0261 | 0.0291 | 0.9935 |
| 1.3203 | 4600 | 0.0262 | - | - |
| 1.3490 | 4700 | 0.0276 | - | - |
| 1.3777 | 4800 | 0.0256 | - | - |
| 1.4064 | 4900 | 0.0272 | - | - |
| 1.4351 | 5000 | 0.0283 | 0.0284 | 0.9939 |
| 1.4638 | 5100 | 0.0254 | - | - |
| 1.4925 | 5200 | 0.0252 | - | - |
| 1.5212 | 5300 | 0.0234 | - | - |
| 1.5499 | 5400 | 0.0228 | - | - |
| 1.5786 | 5500 | 0.0248 | 0.0277 | 0.9941 |
| 1.6073 | 5600 | 0.024 | - | - |
| 1.6361 | 5700 | 0.0225 | - | - |
| 1.6648 | 5800 | 0.0234 | - | - |
| 1.6935 | 5900 | 0.0226 | - | - |
| 1.7222 | 6000 | 0.0248 | 0.0265 | 0.9942 |
| 1.7509 | 6100 | 0.0247 | - | - |
| 1.7796 | 6200 | 0.0219 | - | - |
| 1.8083 | 6300 | 0.026 | - | - |
| 1.8370 | 6400 | 0.0209 | - | - |
| 1.8657 | 6500 | 0.0252 | 0.0262 | 0.9945 |
| 1.8944 | 6600 | 0.0218 | - | - |
| 1.9231 | 6700 | 0.0223 | - | - |
| 1.9518 | 6800 | 0.0228 | - | - |
| 1.9805 | 6900 | 0.0242 | - | - |
| 2.0 | 6968 | - | 0.0257 | 0.9946 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}