Upload Embeddings.py
Browse files- Embeddings.py +27 -0
Embeddings.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
def load_glove_embeddings(embeddings_file):
|
| 5 |
+
"""Load embeddings from a file."""
|
| 6 |
+
embeddings = {}
|
| 7 |
+
with open(embeddings_file, "r", encoding="utf8") as fp:
|
| 8 |
+
for index, line in enumerate(fp):
|
| 9 |
+
values = line.split()
|
| 10 |
+
word = values[0]
|
| 11 |
+
embedding = np.asarray(values[1:], dtype='float32')
|
| 12 |
+
embeddings[word] = embedding
|
| 13 |
+
return embeddings
|
| 14 |
+
|
| 15 |
+
def make_embeddings_matrix(embeddings, word_index, embedding_dim):
|
| 16 |
+
"""Create embeddings matrix to use in Embedding layer."""
|
| 17 |
+
embedding_matrix = np.zeros((len(word_index), embedding_dim))
|
| 18 |
+
for word, i in word_index.items():
|
| 19 |
+
embedding_vector = embeddings.get(word)
|
| 20 |
+
if embedding_vector is not None:
|
| 21 |
+
embedding_matrix[i] = embedding_vector
|
| 22 |
+
return embedding_matrix
|
| 23 |
+
|
| 24 |
+
def get_embeddings(embedding_file_path, tokenizer, embedding_dim):
|
| 25 |
+
glove_embeddings = load_glove_embeddings(embeddings_file=embedding_file_path)
|
| 26 |
+
embedding_matrix = make_embeddings_matrix(embeddings=glove_embeddings, word_index=tokenizer.token_to_index, embedding_dim=embedding_dim)
|
| 27 |
+
return embedding_matrix
|