Encoder
Browse files- LabelEncoder.py +46 -0
LabelEncoder.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
class LabelEncoder(object):
|
| 5 |
+
"""Label encoder for tag labels."""
|
| 6 |
+
def __init__(self, class_to_index={}):
|
| 7 |
+
self.class_to_index = class_to_index
|
| 8 |
+
self.index_to_class = {v: k for k, v in self.class_to_index.items()}
|
| 9 |
+
self.classes = list(self.class_to_index.keys())
|
| 10 |
+
|
| 11 |
+
def __len__(self):
|
| 12 |
+
return len(self.class_to_index)
|
| 13 |
+
|
| 14 |
+
def __str__(self):
|
| 15 |
+
return f"<LabelEncoder(num_classes={len(self)})>"
|
| 16 |
+
|
| 17 |
+
def fit(self, y):
|
| 18 |
+
classes = np.unique(y)
|
| 19 |
+
for i, class_ in enumerate(classes):
|
| 20 |
+
self.class_to_index[class_] = i
|
| 21 |
+
self.index_to_class = {v: k for k, v in self.class_to_index.items()}
|
| 22 |
+
self.classes = list(self.class_to_index.keys())
|
| 23 |
+
return self
|
| 24 |
+
|
| 25 |
+
def encode(self, y):
|
| 26 |
+
encoded = np.zeros((len(y)), dtype=int)
|
| 27 |
+
for i, item in enumerate(y):
|
| 28 |
+
encoded[i] = self.class_to_index[item]
|
| 29 |
+
return encoded
|
| 30 |
+
|
| 31 |
+
def decode(self, y):
|
| 32 |
+
classes = []
|
| 33 |
+
for i, item in enumerate(y):
|
| 34 |
+
classes.append(self.index_to_class[item])
|
| 35 |
+
return classes
|
| 36 |
+
|
| 37 |
+
def save(self, fp):
|
| 38 |
+
with open(fp, "w") as fp:
|
| 39 |
+
contents = {'class_to_index': self.class_to_index}
|
| 40 |
+
json.dump(contents, fp, indent=4, sort_keys=False)
|
| 41 |
+
|
| 42 |
+
@classmethod
|
| 43 |
+
def load(cls, fp):
|
| 44 |
+
with open(fp, "r") as fp:
|
| 45 |
+
kwargs = json.load(fp=fp)
|
| 46 |
+
return cls(**kwargs)
|