Spaces:
Running
Running
| from functools import cache | |
| from pickle import load | |
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import torch | |
| from scorer import build_model, config_presets | |
| def load_model(preset="edm2-img64-s-fid", device='cpu'): | |
| return build_model(preset, device) | |
| def load_reference_scores(model_dir): | |
| with np.load(f"{model_dir}/refscores.npz", "rb") as f: | |
| ref_nll = f["arr_0"] | |
| return ref_nll | |
| def compute_gmm_likelihood(x_score, model_dir): | |
| with open(f"{model_dir}/gmm.pkl", "rb") as f: | |
| clf = load(f) | |
| nll = -clf.score(x_score) | |
| ref_nll = load_reference_scores(model_dir) | |
| percentile = (ref_nll < nll).mean() * 100 | |
| return nll, percentile, ref_nll | |
| def plot_against_reference(nll, ref_nll): | |
| fig, ax = plt.subplots() | |
| ax.hist(ref_nll, label="Reference Scores") | |
| ax.axvline(nll, label='Image Score', c='red', ls="--") | |
| plt.legend() | |
| fig.tight_layout() | |
| return fig | |
| def run_inference(img, preset="edm2-img64-s-fid", device="cuda"): | |
| img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0) | |
| img = torch.nn.functional.interpolate(img, size=64, mode='bilinear') | |
| model = load_model(preset=preset, device=device) | |
| x = model(img.cuda()) | |
| x = x.square().sum(dim=(2, 3, 4)) ** 0.5 | |
| nll, pct, ref_nll = compute_gmm_likelihood(x.cpu(), model_dir=f"models/{preset}") | |
| plot = plot_against_reference(nll, ref_nll) | |
| outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile" | |
| return outstr, plot | |
| demo = gr.Interface( | |
| fn=run_inference, | |
| inputs=["image"], | |
| outputs=["text", gr.Plot(label="Comparing to Imagenette")], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |