Spaces:
Running
Running
| import os | |
| import pickle | |
| from pickle import dump, load | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from sklearn.mixture import GaussianMixture | |
| from sklearn.model_selection import GridSearchCV | |
| from sklearn.pipeline import Pipeline | |
| from sklearn.preprocessing import StandardScaler | |
| from tqdm import tqdm | |
| import dnnlib | |
| model_root = "https://nvlabs-fi-cdn.nvidia.com/edm2/posthoc-reconstructions" | |
| config_presets = { | |
| "edm2-img64-s-fid": f"{model_root}/edm2-img64-s-1073741-0.075.pkl", # fid = 1.58 | |
| "edm2-img64-m-fid": f"{model_root}/edm2-img64-m-2147483-0.060.pkl", # fid = 1.43 | |
| "edm2-img64-l-fid": f"{model_root}/edm2-img64-l-1073741-0.040.pkl", # fid = 1.33 | |
| } | |
| class EDMScorer(torch.nn.Module): | |
| def __init__( | |
| self, | |
| net, | |
| stop_ratio=0.8, # Maximum ratio of noise levels to compute | |
| num_steps=10, # Number of noise levels to evaluate. | |
| use_fp16=False, # Execute the underlying model at FP16 precision? | |
| sigma_min=0.002, # Minimum supported noise level. | |
| sigma_max=80, # Maximum supported noise level. | |
| sigma_data=0.5, # Expected standard deviation of the training data. | |
| rho=7, # Time step discretization. | |
| device=torch.device("cpu"), # Device to use. | |
| ): | |
| super().__init__() | |
| self.use_fp16 = use_fp16 | |
| self.sigma_min = sigma_min | |
| self.sigma_max = sigma_max | |
| self.sigma_data = sigma_data | |
| self.net = net.eval() | |
| # Adjust noise levels based on how far we want to accumulate | |
| self.sigma_min = 1e-1 | |
| self.sigma_max = sigma_max * stop_ratio | |
| step_indices = torch.arange(num_steps, dtype=torch.float64, device=device) | |
| t_steps = ( | |
| self.sigma_max ** (1 / rho) | |
| + step_indices | |
| / (num_steps - 1) | |
| * (self.sigma_min ** (1 / rho) - self.sigma_max ** (1 / rho)) | |
| ) ** rho | |
| # print("Using steps:", t_steps) | |
| self.register_buffer("sigma_steps", t_steps.to(torch.float64)) | |
| def forward( | |
| self, | |
| x, | |
| force_fp32=False, | |
| ): | |
| x = x.to(torch.float32) | |
| batch_scores = [] | |
| for sigma in self.sigma_steps: | |
| xhat = self.net(x, sigma, force_fp32=force_fp32) | |
| c_skip = self.net.sigma_data**2 / (sigma**2 + self.net.sigma_data**2) | |
| score = xhat - (c_skip * x) | |
| batch_scores.append(score) | |
| batch_scores = torch.stack(batch_scores, axis=1) | |
| return batch_scores | |
| def build_model(preset="edm2-img64-s-fid", device="cpu"): | |
| netpath = config_presets[preset] | |
| with dnnlib.util.open_url(netpath, verbose=1) as f: | |
| data = pickle.load(f) | |
| net = data["ema"] | |
| model = EDMScorer(net, num_steps=20).to(device) | |
| return model | |
| def train_gmm(score_path, outdir): | |
| def quantile_scorer(gmm, X, y=None): | |
| return np.quantile(gmm.score_samples(X), 0.1) | |
| X = torch.load(score_path) | |
| gm = GaussianMixture(init_params="kmeans", covariance_type="full", max_iter=100000) | |
| clf = Pipeline([("scaler", StandardScaler()), ("GMM", gm)]) | |
| clf.fit(X) | |
| inlier_nll = -clf.score_samples(X) | |
| param_grid = dict( | |
| GMM__n_components=range(2, 11, 2), | |
| ) | |
| grid = GridSearchCV( | |
| estimator=clf, | |
| param_grid=param_grid, | |
| cv=10, | |
| n_jobs=2, | |
| verbose=1, | |
| scoring=quantile_scorer, | |
| ) | |
| grid_result = grid.fit(X) | |
| print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) | |
| print("-----" * 15) | |
| means = grid_result.cv_results_["mean_test_score"] | |
| stds = grid_result.cv_results_["std_test_score"] | |
| params = grid_result.cv_results_["params"] | |
| for mean, stdev, param in zip(means, stds, params): | |
| print("%f (%f) with: %r" % (mean, stdev, param)) | |
| clf = grid.best_estimator_ | |
| os.makedirs(outdir, exist_ok=True) | |
| with open(f"{outdir}/refscores.npz", "wb") as f: | |
| np.savez_compressed(f, inlier_nll) | |
| with open(f"{outdir}/gmm.pkl", "wb") as f: | |
| dump(clf, f, protocol=5) | |
| def compute_gmm_likelihood(x_score, gmmdir): | |
| with open(f"{gmmdir}/gmm.pkl", "rb") as f: | |
| clf = load(f) | |
| nll = -clf.score_samples(x_score) | |
| with np.load(f"{gmmdir}/refscores.npz", "wb") as f: | |
| ref_nll = f["arr_0"] | |
| percentile = (ref_nll < nll).mean() | |
| return nll, percentile | |
| def test_runner(device="cpu"): | |
| # f = "doge.jpg" | |
| f = "goldfish.JPEG" | |
| image = (PIL.Image.open(f)).resize((64, 64), PIL.Image.Resampling.LANCZOS) | |
| image = np.array(image) | |
| image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1) | |
| x = torch.from_numpy(image).unsqueeze(0).to(device) | |
| model = build_model(device=device) | |
| scores = model(x) | |
| return scores | |
| def runner(preset, dataset_path, device="cpu"): | |
| dsobj = ImageFolderDataset(path=dataset_path, resolution=64) | |
| refimg, reflabel = dsobj[0] | |
| print(refimg.shape, refimg.dtype, reflabel) | |
| dsloader = torch.utils.data.DataLoader( | |
| dsobj, batch_size=48, num_workers=4, prefetch_factor=2 | |
| ) | |
| model = build_model(preset=preset, device=device) | |
| score_norms = [] | |
| for x, _ in tqdm(dsloader): | |
| s = model(x.to(device)) | |
| s = s.square().sum(dim=(2, 3, 4)) ** 0.5 | |
| score_norms.append(s.cpu()) | |
| score_norms = torch.cat(score_norms, dim=0) | |
| os.makedirs("out/msma", exist_ok=True) | |
| with open(f"out/msma/{preset}_imagenette_score_norms.pt", "wb") as f: | |
| torch.save(score_norms, f) | |
| print(f"Computed score norms for {score_norms.shape[0]} samples") | |
| if __name__ == "__main__": | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| preset = "edm2-img64-s-fid" | |
| # runner( | |
| # preset=preset, | |
| # dataset_path="/GROND_STOR/amahmood/datasets/img64/", | |
| # device="cuda", | |
| # ) | |
| train_gmm( | |
| f"out/msma/{preset}_imagenette_score_norms.pt", outdir=f"out/msma/{preset}" | |
| ) | |
| s = test_runner(device=device) | |
| s = s.square().sum(dim=(2, 3, 4)) ** 0.5 | |
| s = s.to("cpu").numpy() | |
| nll, pct = compute_gmm_likelihood(s, gmmdir=f"out/msma/{preset}") | |
| print(f"Anomaly score for image: {nll[0]:.3f} @ {pct*100:.2f} percentile") | |