asdfasdfdsafdsa's picture
Upload 3 files
1601325 verified
raw
history blame
11.2 kB
"""
FastAPI service for Czech text correction pipeline
Combines grammar error correction and punctuation restoration
"""
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import Optional, List, Dict
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTokenClassification, pipeline
import time
import re
import logging
from contextlib import asynccontextmanager
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables for models
gec_model = None
gec_tokenizer = None
punct_pipeline = None
device = None
# Optimal hyperparameters for production
GEC_CONFIG = {
"num_beams": 8,
"do_sample": False,
"repetition_penalty": 1.0,
"length_penalty": 1.0,
"no_repeat_ngram_size": 0,
"early_stopping": True,
"max_new_tokens": 1500
}
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Load models on startup, cleanup on shutdown"""
global gec_model, gec_tokenizer, punct_pipeline, device
logger.info("Loading models...")
# Setup device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Load GEC model
logger.info("Loading Czech GEC model...")
gec_tokenizer = AutoTokenizer.from_pretrained("ufal/byt5-large-geccc-mate")
gec_model = AutoModelForSeq2SeqLM.from_pretrained("ufal/byt5-large-geccc-mate")
gec_model = gec_model.to(device)
logger.info("GEC model loaded successfully")
# Load punctuation model
logger.info("Loading punctuation model...")
punct_tokenizer = AutoTokenizer.from_pretrained("kredor/punctuate-all")
punct_model = AutoModelForTokenClassification.from_pretrained("kredor/punctuate-all")
punct_pipeline = pipeline(
"token-classification",
model=punct_model,
tokenizer=punct_tokenizer,
device=0 if torch.cuda.is_available() else -1
)
logger.info("Punctuation model loaded successfully")
logger.info("All models loaded and ready")
yield
# Cleanup (if needed)
logger.info("Shutting down...")
# Create FastAPI app with lifespan
app = FastAPI(
title="Czech Text Correction API",
description="API for Czech grammar error correction and punctuation restoration",
version="1.0.0",
lifespan=lifespan
)
# Enable CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Request/Response models
class CorrectionRequest(BaseModel):
text: str = Field(..., max_length=5000, description="Czech text to correct")
options: Optional[Dict] = Field(default={}, description="Optional parameters")
class CorrectionResponse(BaseModel):
success: bool
corrected_text: str
processing_time_ms: Optional[float] = None
error: Optional[str] = None
class BatchCorrectionRequest(BaseModel):
texts: List[str] = Field(..., max_items=10, description="List of texts to correct")
options: Optional[Dict] = Field(default={}, description="Optional parameters")
class BatchCorrectionResponse(BaseModel):
success: bool
corrected_texts: List[str]
processing_time_ms: Optional[float] = None
error: Optional[str] = None
class HealthResponse(BaseModel):
status: str
models_loaded: bool
gpu_available: bool
device: str
class InfoResponse(BaseModel):
name: str
version: str
models: Dict[str, str]
capabilities: List[str]
max_input_length: int
def apply_gec_correction(text: str) -> str:
"""Apply grammar error correction to text"""
if not text.strip():
return text
# Tokenize
inputs = gec_tokenizer(
text,
return_tensors="pt",
max_length=1024,
truncation=True
)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate correction
with torch.no_grad():
outputs = gec_model.generate(
**inputs,
**GEC_CONFIG
)
# Decode
corrected = gec_tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected
def apply_punctuation(text: str) -> str:
"""Apply punctuation and capitalization to text"""
if not text.strip():
return text
# Process with pipeline
clean_text = text.lower()
results = punct_pipeline(clean_text)
# Build punctuation map
punct_map = {}
current_word = ""
current_punct = ""
for i, result in enumerate(results):
word = result['word'].replace('▁', '').strip()
# Map entity labels to punctuation
entity = result['entity']
punct_marks = {
'LABEL_0': '',
'LABEL_1': '.',
'LABEL_2': ',',
'LABEL_3': '?',
'LABEL_4': '-',
'LABEL_5': ':'
}
punct = punct_marks.get(entity, '')
# Handle subword tokens
if not result['word'].startswith('▁') and i > 0:
current_word += word
else:
if current_word:
punct_map[current_word] = current_punct
current_word = word
current_punct = punct
# Add last word
if current_word:
punct_map[current_word] = current_punct
# Reconstruct with punctuation
words = clean_text.split()
punctuated = []
for word in words:
if word in punct_map and punct_map[word]:
punctuated.append(word + punct_map[word])
else:
punctuated.append(word)
# Join and capitalize sentences
result = ' '.join(punctuated)
# Capitalize first letter and after sentence endings
sentences = re.split(r'(?<=[.?!])\s+', result)
capitalized = ' '.join(s[0].upper() + s[1:] if s else s for s in sentences)
# Clean spacing around punctuation
for p in [',', '.', '?', ':', '!', ';']:
capitalized = capitalized.replace(f' {p}', p)
return capitalized
def process_text(text: str) -> str:
"""Full pipeline: GEC + punctuation"""
# Step 1: Grammar correction
gec_corrected = apply_gec_correction(text)
# Step 2: Punctuation and capitalization
final_text = apply_punctuation(gec_corrected)
return final_text
@app.post("/api/correct", response_model=CorrectionResponse)
async def correct_text(request: CorrectionRequest):
"""
Correct Czech text (grammar + punctuation)
"""
try:
start_time = time.time()
# Validate input
if not request.text.strip():
raise HTTPException(status_code=400, detail="Text cannot be empty")
if len(request.text) > 5000:
raise HTTPException(status_code=400, detail="Text too long (max 5000 characters)")
# Process text
corrected = process_text(request.text)
# Calculate processing time
processing_time = (time.time() - start_time) * 1000
# Include timing if requested
response = CorrectionResponse(
success=True,
corrected_text=corrected
)
if request.options.get("include_timing", False):
response.processing_time_ms = processing_time
return response
except Exception as e:
logger.error(f"Error processing text: {str(e)}")
return CorrectionResponse(
success=False,
corrected_text="",
error=str(e)
)
@app.post("/api/correct/batch", response_model=BatchCorrectionResponse)
async def correct_batch(request: BatchCorrectionRequest):
"""
Correct multiple Czech texts
"""
try:
start_time = time.time()
# Validate
if not request.texts:
raise HTTPException(status_code=400, detail="No texts provided")
# Process each text
corrected_texts = []
for text in request.texts:
if len(text) > 5000:
corrected_texts.append(f"[Error: Text too long]")
else:
corrected = process_text(text)
corrected_texts.append(corrected)
# Calculate processing time
processing_time = (time.time() - start_time) * 1000
response = BatchCorrectionResponse(
success=True,
corrected_texts=corrected_texts
)
if request.options.get("include_timing", False):
response.processing_time_ms = processing_time
return response
except Exception as e:
logger.error(f"Error processing batch: {str(e)}")
return BatchCorrectionResponse(
success=False,
corrected_texts=[],
error=str(e)
)
@app.post("/api/correct/gec-only")
async def correct_gec_only(request: CorrectionRequest):
"""
Apply only grammar error correction (no punctuation)
"""
try:
corrected = apply_gec_correction(request.text)
return CorrectionResponse(
success=True,
corrected_text=corrected
)
except Exception as e:
return CorrectionResponse(
success=False,
corrected_text="",
error=str(e)
)
@app.post("/api/correct/punct-only")
async def correct_punct_only(request: CorrectionRequest):
"""
Apply only punctuation restoration (no grammar correction)
"""
try:
corrected = apply_punctuation(request.text)
return CorrectionResponse(
success=True,
corrected_text=corrected
)
except Exception as e:
return CorrectionResponse(
success=False,
corrected_text="",
error=str(e)
)
@app.get("/api/health", response_model=HealthResponse)
async def health_check():
"""
Check API health and model status
"""
models_loaded = (gec_model is not None and punct_pipeline is not None)
return HealthResponse(
status="healthy" if models_loaded else "loading",
models_loaded=models_loaded,
gpu_available=torch.cuda.is_available(),
device=str(device) if device else "not initialized"
)
@app.get("/api/info", response_model=InfoResponse)
async def get_info():
"""
Get API information and capabilities
"""
return InfoResponse(
name="Czech Text Correction API",
version="1.0.0",
models={
"gec": "ufal/byt5-large-geccc-mate",
"punctuation": "kredor/punctuate-all"
},
capabilities=[
"Grammar error correction",
"Punctuation restoration",
"Capitalization",
"Batch processing",
"Czech language focus"
],
max_input_length=5000
)
@app.get("/")
async def root():
"""Root endpoint with API documentation link"""
return {
"message": "Czech Text Correction API",
"docs": "/docs",
"health": "/api/health",
"info": "/api/info"
}
if __name__ == "__main__":
import uvicorn
import os
port = int(os.environ.get("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)