File size: 21,288 Bytes
be69583 e7a0281 08ba0e7 be69583 8131256 be69583 e7a0281 08ba0e7 c82e303 08ba0e7 e7a0281 8131256 e7a0281 be69583 e7a0281 be69583 e7a0281 be69583 08ba0e7 be69583 a21e04b e7a0281 be69583 8131256 e7a0281 be69583 a21e04b 08ba0e7 a21e04b 08ba0e7 be69583 a21e04b e7a0281 be69583 8131256 be69583 08ba0e7 a21e04b 08ba0e7 be69583 a21e04b be69583 a21e04b be69583 e7a0281 be69583 8131256 a21e04b be69583 a21e04b 08ba0e7 be69583 a21e04b be69583 6bc1625 eba11b2 08ba0e7 be69583 08ba0e7 a21e04b be69583 e7a0281 be69583 e7a0281 be69583 a21e04b 08ba0e7 be69583 e7a0281 be69583 a21e04b be69583 08ba0e7 be69583 a21e04b 8131256 a21e04b 8131256 be69583 a21e04b be69583 e7a0281 be69583 08ba0e7 78d1bcb 08ba0e7 a21e04b 08ba0e7 a21e04b 78d1bcb eba11b2 08ba0e7 6bc1625 08ba0e7 a21e04b 78d1bcb eba11b2 78d1bcb 08ba0e7 a21e04b 08ba0e7 6bc1625 08ba0e7 78d1bcb 08ba0e7 a21e04b 08ba0e7 a21e04b 08ba0e7 a21e04b 78d1bcb eba11b2 a21e04b 6bc1625 08ba0e7 a21e04b 08ba0e7 a21e04b 08ba0e7 a21e04b 78d1bcb a21e04b eba11b2 78d1bcb 08ba0e7 a21e04b 08ba0e7 6bc1625 08ba0e7 e7a0281 be69583 08ba0e7 be69583 a21e04b 83e6d64 8131256 a21e04b be69583 a21e04b 8131256 be69583 e7a0281 08ba0e7 83e6d64 a21e04b 83e6d64 a21e04b 83e6d64 a21e04b 83e6d64 a21e04b 83e6d64 08ba0e7 e7a0281 a21e04b eba11b2 a21e04b e7a0281 eba11b2 0ae4672 a21e04b eba11b2 e7a0281 a21e04b e7a0281 0ae4672 e7a0281 a21e04b e7a0281 a21e04b be69583 8131256 be69583 08ba0e7 be69583 a21e04b be69583 a21e04b be69583 e7a0281 a21e04b 6bc1625 a21e04b be69583 a21e04b c82e303 a21e04b eba11b2 a21e04b eba11b2 a21e04b 78d1bcb a21e04b e7a0281 a21e04b e7a0281 a21e04b 6bc1625 c82e303 08ba0e7 a21e04b e7a0281 a21e04b be69583 e7a0281 be69583 c82e303 a21e04b 6bc1625 be69583 a21e04b be69583 a21e04b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import gradio as gr
import numpy as np
import torch
import time
import warnings
from dataclasses import dataclass
from typing import List, Tuple, Dict
import threading
import queue
import os
import requests
from pathlib import Path
# Suppress warnings
warnings.filterwarnings('ignore')
# Optional imports with fallbacks
try:
import librosa
LIBROSA_AVAILABLE = True
print("β
Librosa available")
except ImportError:
LIBROSA_AVAILABLE = False
print("β οΈ Librosa not available, using scipy fallback")
try:
import webrtcvad
WEBRTC_AVAILABLE = True
print("β
WebRTC VAD available")
except ImportError:
WEBRTC_AVAILABLE = False
print("β οΈ WebRTC VAD not available, using fallback")
try:
import plotly.graph_objects as go
from plotly.subplots import make_subplots
PLOTLY_AVAILABLE = True
print("β
Plotly available")
except ImportError:
PLOTLY_AVAILABLE = False
print("β οΈ Plotly not available")
# PANNs imports
try:
from panns_inference import AudioTagging, labels
PANNS_AVAILABLE = True
print("β
PANNs available")
except ImportError:
PANNS_AVAILABLE = False
print("β οΈ PANNs not available, using fallback")
# Transformers for AST
try:
from transformers import ASTForAudioClassification, ASTFeatureExtractor
import transformers
AST_AVAILABLE = True
print("β
AST (Transformers) available")
except ImportError:
AST_AVAILABLE = False
print("β οΈ AST not available, using fallback")
print("π Creating Real-time VAD Demo...")
# ===== DATA STRUCTURES =====
@dataclass
class VADResult:
probability: float
is_speech: bool
model_name: str
processing_time: float
timestamp: float
@dataclass
class OnsetOffset:
onset_time: float
offset_time: float
model_name: str
confidence: float
# ===== MODEL IMPLEMENTATIONS =====
class OptimizedSileroVAD:
def __init__(self):
self.model = None
self.sample_rate = 16000
self.model_name = "Silero-VAD"
self.load_model()
def load_model(self):
try:
self.model, _ = torch.hub.load(
repo_or_dir='snakers4/silero-vad',
model='silero_vad',
force_reload=False,
onnx=False
)
self.model.eval()
print(f"β
{self.model_name} loaded successfully")
except Exception as e:
print(f"β Error loading {self.model_name}: {e}")
self.model = None
def reset_states(self):
if self.model:
self.model.reset_states()
def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
start_time = time.time()
if self.model is None or len(audio) == 0:
return VADResult(0.0, False, f"{self.model_name} (unavailable)", time.time() - start_time, timestamp)
try:
if len(audio.shape) > 1: audio = audio.mean(axis=1)
# Silero expects a specific chunk size, which the main loop should provide.
# No padding or trimming here.
audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
with torch.no_grad():
speech_prob = self.model(audio_tensor, self.sample_rate).item()
is_speech = speech_prob > 0.5
processing_time = time.time() - start_time
return VADResult(speech_prob, is_speech, self.model_name, processing_time, timestamp)
except Exception as e:
# This can happen if chunk size is wrong, which is now handled in main loop
return VADResult(0.0, False, self.model_name, time.time() - start_time, timestamp)
class OptimizedWebRTCVAD:
def __init__(self):
self.model_name = "WebRTC-VAD"
self.sample_rate = 16000
self.frame_duration = 10 # 10, 20, or 30 ms. 10ms for higher granularity.
self.frame_size = int(self.sample_rate * self.frame_duration / 1000)
if WEBRTC_AVAILABLE:
try:
self.vad = webrtcvad.Vad(3)
print(f"β
{self.model_name} loaded successfully")
except: self.vad = None
else: self.vad = None
def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
start_time = time.time()
if self.vad is None or len(audio) == 0:
return VADResult(0.0, False, f"{self.model_name} (fallback)", time.time() - start_time, timestamp)
try:
if len(audio.shape) > 1: audio = audio.mean(axis=1)
audio_int16 = (audio * 32767).astype(np.int16)
speech_frames, total_frames = 0, 0
for i in range(0, len(audio_int16) - self.frame_size + 1, self.frame_size):
frame = audio_int16[i:i + self.frame_size].tobytes()
if self.vad.is_speech(frame, self.sample_rate):
speech_frames += 1
total_frames += 1
probability = speech_frames / max(total_frames, 1)
is_speech = probability > 0.5
return VADResult(probability, is_speech, self.model_name, time.time() - start_time, timestamp)
except Exception as e:
return VADResult(0.0, False, self.model_name, time.time() - start_time, timestamp)
class OptimizedEPANNs:
def __init__(self):
self.model_name = "E-PANNs"
self.sample_rate = 16000
print(f"β
{self.model_name} initialized")
def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
start_time = time.time()
if len(audio) == 0: return VADResult(0.0, False, self.model_name, time.time() - start_time, timestamp)
try:
if LIBROSA_AVAILABLE:
mel_spec = librosa.feature.melspectrogram(y=audio, sr=self.sample_rate, n_mels=64)
energy = np.mean(librosa.power_to_db(mel_spec, ref=np.max))
else:
from scipy import signal
_, _, Sxx = signal.spectrogram(audio, self.sample_rate)
energy = np.mean(10 * np.log10(Sxx + 1e-10))
speech_score = (energy + 100) / 50
probability = np.clip(speech_score, 0, 1)
return VADResult(probability, probability > 0.6, self.model_name, time.time() - start_time, timestamp)
except Exception as e:
return VADResult(0.0, False, self.model_name, time.time() - start_time, timestamp)
class OptimizedPANNs:
def __init__(self):
self.model_name = "PANNs"
self.sample_rate = 32000
self.model = None
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.cached_clip_prob = None
self.load_model()
def load_model(self):
try:
if PANNS_AVAILABLE:
self.model = AudioTagging(checkpoint_path=None, device=self.device)
print(f"β
{self.model_name} loaded successfully")
else: self.model = None
except Exception as e:
print(f"β Error loading {self.model_name}: {e}")
self.model = None
def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
if self.cached_clip_prob is not None:
return VADResult(self.cached_clip_prob, self.cached_clip_prob > 0.5, self.model_name, 0.0, timestamp)
start_time = time.time()
if self.model is None or len(audio) == 0:
return VADResult(0.0, False, f"{self.model_name} (fallback)", time.time() - start_time, timestamp)
try:
# Use clipwise_output for probabilities, not embeddings.
clip_probs, _ = self.model.inference(audio[np.newaxis, :], input_sr=self.sample_rate)
# Filter all speech/voice-related labels for a robust average.
speech_idx = [i for i, lbl in enumerate(labels) if 'speech' in lbl.lower() or 'voice' in lbl.lower()]
if not speech_idx: speech_idx = [labels.index('Speech')]
speech_prob = clip_probs[0, speech_idx].mean().item()
self.cached_clip_prob = float(speech_prob)
return VADResult(self.cached_clip_prob, self.cached_clip_prob > 0.5, self.model_name, time.time() - start_time, timestamp)
except Exception as e:
return VADResult(0.0, False, f"{self.model_name} (error)", time.time() - start_time, timestamp)
class OptimizedAST:
def __init__(self):
self.model_name = "AST"
self.sample_rate = 16000
self.model = None
self.feature_extractor = None
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.cached_clip_prob = None
self.load_model()
def load_model(self):
try:
if AST_AVAILABLE:
model_path = "MIT/ast-finetuned-audioset-10-10-0.4593"
self.feature_extractor = ASTFeatureExtractor.from_pretrained(model_path)
self.model = ASTForAudioClassification.from_pretrained(model_path).to(self.device).eval()
print(f"β
{self.model_name} loaded successfully")
else: self.model = None
except Exception as e:
print(f"β Error loading {self.model_name}: {e}")
self.model = None
def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
if self.cached_clip_prob is not None:
return VADResult(self.cached_clip_prob, self.cached_clip_prob > 0.5, self.model_name, 0.0, timestamp)
start_time = time.time()
if self.model is None or len(audio) < self.sample_rate * 2: # AST needs at least ~2s
return VADResult(0.0, False, f"{self.model_name} (fallback)", time.time() - start_time, timestamp)
try:
inputs = self.feature_extractor(audio, sampling_rate=self.sample_rate, return_tensors="pt").to(self.device)
with torch.no_grad():
probs = torch.sigmoid(self.model(**inputs).logits)
# Use the model's config to find all speech-related labels
label2id = self.model.config.label2id
speech_idx = [idx for lbl, idx in label2id.items() if 'speech' in lbl.lower() or 'voice' in lbl.lower()]
speech_prob = probs[0, speech_idx].mean().item()
self.cached_clip_prob = float(speech_prob)
return VADResult(self.cached_clip_prob, self.cached_clip_prob > 0.5, self.model_name, time.time() - start_time, timestamp)
except Exception as e:
return VADResult(0.0, False, f"{self.model_name} (error)", time.time() - start_time, timestamp)
# ===== AUDIO PROCESSOR =====
class AudioProcessor:
def __init__(self, sample_rate=16000):
self.sample_rate = sample_rate
# Consistent windowing for analysis and STFT
self.window_size = 0.064 # 64 ms
self.hop_size = 0.016 # 16 ms
self.n_fft = int(self.sample_rate * self.window_size) # 1024
self.hop_length = int(self.sample_rate * self.hop_size) # 256
self.n_mels = 128
self.fmin = 20
self.fmax = 8000
def process_audio(self, audio):
if audio is None: return np.array([])
try:
sample_rate, audio_data = audio
if sample_rate != self.sample_rate and LIBROSA_AVAILABLE:
audio_data = librosa.resample(audio_data.astype(float), orig_sr=sample_rate, target_sr=self.sample_rate)
if len(audio_data.shape) > 1: audio_data = audio_data.mean(axis=1)
if np.max(np.abs(audio_data)) > 0: audio_data /= np.max(np.abs(audio_data))
return audio_data
except Exception as e:
return np.array([])
def compute_high_res_spectrogram(self, audio_data):
try:
if LIBROSA_AVAILABLE and len(audio_data) > 0:
stft = librosa.stft(audio_data, n_fft=self.n_fft, hop_length=self.hop_length, center=False)
mel_spec = librosa.feature.melspectrogram(S=np.abs(stft)**2, sr=self.sample_rate, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels)
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
time_frames = librosa.times_like(mel_spec_db, sr=self.sample_rate, hop_length=self.hop_length, n_fft=self.n_fft)
return mel_spec_db, time_frames
return np.array([[]]), np.array([])
except Exception as e:
return np.array([[]]), np.array([])
def detect_onset_offset_advanced(self, vad_results: List[VADResult], threshold: float = 0.5) -> List[OnsetOffset]:
onsets_offsets = []
models = {res.model_name for res in vad_results}
for model_name in models:
results = sorted([r for r in vad_results if r.model_name == model_name], key=lambda x: x.timestamp)
if len(results) < 2: continue
timestamps = np.array([r.timestamp for r in results])
probabilities = np.array([r.probability for r in results])
# Smooth probabilities to prevent brief drops from creating false offsets
probs_smooth = np.convolve(probabilities, np.ones(3)/3, mode='same')
upper = threshold
lower = threshold * 0.5 # Hysteresis lower bound
in_speech = False
onset_time = -1
for i, prob in enumerate(probs_smooth):
if not in_speech and prob > upper:
in_speech = True
onset_time = timestamps[i]
elif in_speech and prob < lower:
in_speech = False
onsets_offsets.append(OnsetOffset(onset_time, timestamps[i], model_name, np.mean(probabilities[(timestamps >= onset_time) & (timestamps <= timestamps[i])])))
if in_speech:
onsets_offsets.append(OnsetOffset(onset_time, timestamps[-1], model_name, np.mean(probabilities[timestamps >= onset_time])))
return onsets_offsets
# ===== VISUALIZATION =====
def create_realtime_plot(audio_data: np.ndarray, vad_results: List[VADResult],
onsets_offsets: List[OnsetOffset], processor: AudioProcessor,
model_a: str, model_b: str, threshold: float):
if not PLOTLY_AVAILABLE or len(audio_data) == 0: return go.Figure()
mel_spec_db, time_frames = processor.compute_high_res_spectrogram(audio_data)
if mel_spec_db.size == 0: return go.Figure()
fig = make_subplots(rows=2, cols=1, subplot_titles=(f"Model A: {model_a}", f"Model B: {model_b}"),
vertical_spacing=0.05, shared_xaxes=True, specs=[[{"secondary_y": True}], [{"secondary_y": True}]])
heatmap_args = dict(z=mel_spec_db, x=time_frames, y=np.linspace(processor.fmin, processor.fmax, processor.n_mels),
colorscale='Viridis', showscale=False)
fig.add_trace(go.Heatmap(**heatmap_args, name=f'Spectrogram {model_a}'), row=1, col=1)
fig.add_trace(go.Heatmap(**heatmap_args, name=f'Spectrogram {model_b}'), row=2, col=1)
data_a = [r for r in vad_results if r.model_name.startswith(model_a)]
data_b = [r for r in vad_results if r.model_name.startswith(model_b)]
if data_a: fig.add_trace(go.Scatter(x=[r.timestamp for r in data_a], y=[r.probability for r in data_a], mode='lines', line=dict(color='yellow', width=3), name=f'{model_a} Prob.'), row=1, col=1, secondary_y=True)
if data_b: fig.add_trace(go.Scatter(x=[r.timestamp for r in data_b], y=[r.probability for r in data_b], mode='lines', line=dict(color='orange', width=3), name=f'{model_b} Prob.'), row=2, col=1, secondary_y=True)
# Draw threshold line on the secondary y-axis
fig.add_hline(y=threshold, line=dict(color='cyan', width=2, dash='dash'), row=1, col=1, secondary_y=True)
fig.add_hline(y=threshold, line=dict(color='cyan', width=2, dash='dash'), row=2, col=1, secondary_y=True)
events_a = [e for e in onsets_offsets if e.model_name.startswith(model_a)]
events_b = [e for e in onsets_offsets if e.model_name.startswith(model_b)]
for event in events_a:
fig.add_vline(x=event.onset_time, line=dict(color='lime', width=3), row=1, col=1)
fig.add_vline(x=event.offset_time, line=dict(color='red', width=3), row=1, col=1)
for event in events_b:
fig.add_vline(x=event.offset_time, line=dict(color='red', width=3), row=2, col=1)
fig.add_vline(x=event.onset_time, line=dict(color='lime', width=3), row=2, col=1)
fig.update_layout(height=600, title_text="Real-Time Speech Visualizer", plot_bgcolor='black', paper_bgcolor='white', font_color='black')
fig.update_yaxes(title_text="Frequency (Hz)", range=[processor.fmin, processor.fmax], secondary_y=False)
fig.update_yaxes(title_text="Probability", range=[0, 1], secondary_y=True) # Apply to all secondary axes
fig.update_xaxes(title_text="Time (seconds)", row=2, col=1)
return fig
# ===== MAIN APPLICATION =====
class VADDemo:
def __init__(self):
self.processor = AudioProcessor()
self.models = {
'Silero-VAD': OptimizedSileroVAD(), 'WebRTC-VAD': OptimizedWebRTCVAD(),
'E-PANNs': OptimizedEPANNs(), 'PANNs': OptimizedPANNs(), 'AST': OptimizedAST()
}
print("π€ VAD Demo initialized with all modules.")
def process_audio_with_events(self, audio, model_a, model_b, threshold):
if audio is None: return None, "π No audio detected", "Ready..."
try:
processed_audio = self.processor.process_audio(audio)
if len(processed_audio) == 0: return None, "Audio empty", "No data"
# Reset caches and states for new clip
for model in self.models.values():
if hasattr(model, 'cached_clip_prob'): model.cached_clip_prob = None
if hasattr(model, 'reset_states'): model.reset_states()
# Pre-compute for heavy models once
if 'PANNs' in self.models:
audio_32k = librosa.resample(processed_audio, orig_sr=self.processor.sample_rate, target_sr=32000)
self.models['PANNs'].predict(audio_32k, 0.0)
if 'AST' in self.models:
self.models['AST'].predict(processed_audio, 0.0)
# Main analysis loop with consistent windowing
vad_results = []
window = int(self.processor.sample_rate * self.processor.window_size) # 1024
hop = int(self.processor.sample_rate * self.hop_size) # 256
silero_chunk_size = 512 # Silero specific requirement
for i in range(0, len(processed_audio) - window + 1, hop):
timestamp = i / self.processor.sample_rate
chunk_1024 = processed_audio[i : i + window]
# Prepare chunk for Silero (last 512 samples of the current window)
chunk_512 = chunk_1024[-silero_chunk_size:]
for model_name in list(set([model_a, model_b])):
model = self.models[model_name]
# Feed correct chunk to each model type
if model_name == 'Silero-VAD':
current_chunk = chunk_512
else:
current_chunk = chunk_1024 # For WebRTC, E-PANNs, and cached models
result = model.predict(current_chunk, timestamp)
result.is_speech = result.probability > threshold
vad_results.append(result)
onsets_offsets = self.processor.detect_onset_offset_advanced(vad_results, threshold)
fig = create_realtime_plot(processed_audio, vad_results, onsets_offsets, self.processor, model_a, model_b, threshold)
status_msg = f"ποΈ Speech detected" if any(e.offset_time > e.onset_time for e in onsets_offsets) else "π No speech detected"
details_text = f"Analyzed {len(processed_audio)/self.processor.sample_rate:.2f}s. Found {len(onsets_offsets)} speech events."
return fig, status_msg, details_text
except Exception as e:
import traceback
traceback.print_exc()
return None, f"β Error: {e}", traceback.format_exc()
# Initialize and create interface
demo_app = VADDemo()
interface = create_interface() # Using the original full interface
interface.launch(share=True, debug=False) |