prithivMLmods's picture
update app
463bb10 verified
import os
import gc
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.orange_red = colors.Color(
name="orange_red",
c50="#FFF0E5",
c100="#FFE0CC",
c200="#FFC299",
c300="#FFA366",
c400="#FF8533",
c500="#FF4500",
c600="#E63E00",
c700="#CC3700",
c800="#B33000",
c900="#992900",
c950="#802200",
)
class OrangeRedTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.orange_red,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
orange_red_theme = OrangeRedTheme()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("Using device:", device)
from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
dtype = torch.bfloat16
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2511",
transformer=QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'
),
torch_dtype=dtype
).to(device)
try:
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
print("Flash Attention 3 Processor set successfully.")
except Exception as e:
print(f"Warning: Could not set FA3 processor: {e}")
MAX_SEED = np.iinfo(np.int32).max
ADAPTER_SPECS = {
"Multiple-Angles": {
"repo": "dx8152/Qwen-Edit-2509-Multiple-angles",
"weights": "镜头转换.safetensors",
"adapter_name": "multiple-angles"
},
"Photo-to-Anime": {
"repo": "autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime",
"weights": "Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors",
"adapter_name": "photo-to-anime"
},
"Any-Pose": {
"repo": "lilylilith/AnyPose",
"weights": "2511-AnyPose-helper-00006000.safetensors",
"adapter_name": "any-pose"
},
"Light-Migration": {
"repo": "dx8152/Qwen-Edit-2509-Light-Migration",
"weights": "参考色调.safetensors",
"adapter_name": "light-migration"
},
"Upscaler": {
"repo": "starsfriday/Qwen-Image-Edit-2511-Upscale2K",
"weights": "qwen_image_edit_2511_upscale.safetensors",
"adapter_name": "upscale-2k"
},
}
LOADED_ADAPTERS = set()
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
@spaces.GPU
def infer(
images,
prompt,
lora_adapter,
seed,
randomize_seed,
guidance_scale,
steps,
progress=gr.Progress(track_tqdm=True)
):
gc.collect()
torch.cuda.empty_cache()
if not images:
raise gr.Error("Please upload at least one image to edit.")
pil_images = []
if images is not None:
for item in images:
try:
if isinstance(item, tuple) or isinstance(item, list):
path_or_img = item[0]
else:
path_or_img = item
if isinstance(path_or_img, str):
pil_images.append(Image.open(path_or_img).convert("RGB"))
elif isinstance(path_or_img, Image.Image):
pil_images.append(path_or_img.convert("RGB"))
else:
pil_images.append(Image.open(path_or_img.name).convert("RGB"))
except Exception as e:
print(f"Skipping invalid image item: {e}")
continue
if not pil_images:
raise gr.Error("Could not process uploaded images.")
spec = ADAPTER_SPECS.get(lora_adapter)
if not spec:
raise gr.Error(f"Configuration not found for: {lora_adapter}")
adapter_name = spec["adapter_name"]
if adapter_name not in LOADED_ADAPTERS:
print(f"--- Downloading and Loading Adapter: {lora_adapter} ---")
try:
pipe.load_lora_weights(
spec["repo"],
weight_name=spec["weights"],
adapter_name=adapter_name
)
LOADED_ADAPTERS.add(adapter_name)
except Exception as e:
raise gr.Error(f"Failed to load adapter {lora_adapter}: {e}")
else:
print(f"--- Adapter {lora_adapter} is already loaded. ---")
pipe.set_adapters([adapter_name], adapter_weights=[1.0])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"
width, height = update_dimensions_on_upload(pil_images[0])
try:
result_image = pipe(
image=pil_images,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=steps,
generator=generator,
true_cfg_scale=guidance_scale,
).images[0]
return result_image, seed
except Exception as e:
raise e
finally:
gc.collect()
torch.cuda.empty_cache()
@spaces.GPU
def infer_example(images, prompt, lora_adapter):
if not images:
return None, 0
if isinstance(images, str):
images_list = [images]
else:
images_list = images
result, seed = infer(
images=images_list,
prompt=prompt,
lora_adapter=lora_adapter,
seed=0,
randomize_seed=True,
guidance_scale=1.0,
steps=4
)
return result, seed
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
}
#main-title h1 {font-size: 2.3em !important;}
"""
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **Qwen-Image-Edit-2511-LoRAs-Fast**", elem_id="main-title")
gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2511) adapters. Upload one or more images.")
with gr.Row(equal_height=True):
with gr.Column():
images = gr.Gallery(
label="Upload Images",
type="filepath",
columns=2,
rows=1,
height=300,
allow_preview=True
)
prompt = gr.Text(
label="Edit Prompt",
show_label=True,
placeholder="e.g., transform into anime..",
)
run_button = gr.Button("Edit Image", variant="primary")
with gr.Column():
output_image = gr.Image(label="Output Image", interactive=False, format="png", height=363)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Choose Editing Style",
choices=list(ADAPTER_SPECS.keys()),
value="Photo-to-Anime"
)
with gr.Accordion("Advanced Settings", open=False, visible=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
gr.Examples(
examples=[
[["examples/B.jpg"], "Transform into anime.", "Photo-to-Anime"],
[["examples/A.jpeg"], "Rotate the camera 45 degrees to the right.", "Multiple-Angles"],
[["examples/U.jpg"], "Upscale this picture to 4K resolution.", "Upscaler"],
[["examples/L1.jpg", "examples/L2.jpg"], "Refer to the color tone, remove the original lighting from Image 1, and relight Image 1 based on the lighting and color tone of Image 2.", "Light-Migration"],
[["examples/P1.jpg", "examples/P2.jpg"], "Make the person in image 1 do the exact same pose of the person in image 2. Changing the style and background of the image of the person in image 1 is undesirable, so don't do it.", "Any-Pose"],
],
inputs=[images, prompt, lora_adapter],
outputs=[output_image, seed],
fn=infer_example,
cache_examples=False,
label="Examples"
)
gr.Markdown("[*](https://huggingface.co/spaces/prithivMLmods/Qwen-Image-Edit-2511-LoRAs-Fast)This is still an experimental Space for Qwen-Image-Edit-2511.")
run_button.click(
fn=infer,
inputs=[images, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps],
outputs=[output_image, seed]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(css=css, theme=orange_red_theme, mcp_server=True, ssr_mode=False, show_error=True)