Ruining Li
Init: add PartField + particulate, track example assets via LFS
4f22fc0
import numpy as np
import torch
import polyscope as ps
import polyscope.imgui as psim
import potpourri3d as pp3d
import trimesh
import igl
from dataclasses import dataclass
from simple_parsing import ArgumentParser
from arrgh import arrgh
### For clustering
from collections import defaultdict
from sklearn.cluster import AgglomerativeClustering, DBSCAN, KMeans
from scipy.sparse import coo_matrix, csr_matrix
from scipy.spatial import KDTree
from scipy.sparse.csgraph import connected_components
from sklearn.neighbors import NearestNeighbors
import networkx as nx
from scipy.optimize import linear_sum_assignment
import os, sys
sys.path.append("..")
from partfield.utils import *
@dataclass
class Options:
""" Basic Options """
filename: str
filename_alt: str = None
"""System Options"""
device: str = "cuda" # Device
debug: bool = False # enable debug checks
extras: bool = False # include extra output for viz/debugging
""" State """
mode: str = 'co-segmentation'
m: dict = None # mesh
m_alt: dict = None # second mesh
# pca mode
# feature explore mode
i_feature: int = 0
i_cluster: int = 1
i_cluster2: int = 1
i_eps: int = 0.6
### For mixing in clustering
weight_dist = 1.0
weight_feat = 1.0
### For clustering visualization
independent: bool = True
source_init: bool = True
feature_range: float = 0.1
continuous_explore: bool = False
viz_mode: str = "faces"
output_fol: str = "results_pair"
### counter for screenshot
counter: int = 0
modes_list = ['feature_explore', "co-segmentation"]
def load_features(feature_filename, mesh_filename, viz_mode):
print("Reading features:")
print(f" Feature filename: {feature_filename}")
print(f" Mesh filename: {mesh_filename}")
# load features
feat = np.load(feature_filename, allow_pickle=True)
feat = feat.astype(np.float32)
# load mesh things
tm = load_mesh_util(mesh_filename)
V = np.array(tm.vertices, dtype=np.float32)
F = np.array(tm.faces)
if viz_mode == "faces":
pca_colors = np.array(tm.visual.face_colors, dtype=np.float32)
pca_colors = pca_colors[:,:3] / 255.
else:
pca_colors = np.array(tm.visual.vertex_colors, dtype=np.float32)
pca_colors = pca_colors[:,:3] / 255.
arrgh(V, F, pca_colors, feat)
return {
'V' : V,
'F' : F,
'pca_colors' : pca_colors,
'feat_np' : feat,
'feat_pt' : torch.tensor(feat, device='cuda'),
'trimesh' : tm,
'label' : None,
'num_cluster' : 1,
'scalar' : None
}
def prep_feature_mesh(m, name='mesh'):
ps_mesh = ps.register_surface_mesh(name, m['V'], m['F'])
ps_mesh.set_selection_mode('faces_only')
m['ps_mesh'] = ps_mesh
def viz_pca_colors(m):
m['ps_mesh'].add_color_quantity('pca colors', m['pca_colors'], enabled=True, defined_on=m["viz_mode"])
def viz_feature(m, ind):
m['ps_mesh'].add_scalar_quantity('pca colors', m['feat_np'][:,ind], cmap='turbo', enabled=True, defined_on=m["viz_mode"])
def feature_distance_np(feats, query_feat):
# normalize
feats = feats / np.linalg.norm(feats,axis=1)[:,None]
query_feat = query_feat / np.linalg.norm(query_feat)
# cosine distance
cos_sim = np.dot(feats, query_feat)
cos_dist = (1 - cos_sim) / 2.
return cos_dist
def feature_distance_pt(feats, query_feat):
return (1. - torch.nn.functional.cosine_similarity(feats, query_feat[None,:], dim=-1)) / 2.
def ps_callback(opts):
m = opts.m
changed, ind = psim.Combo("Mode", modes_list.index(opts.mode), modes_list)
if changed:
opts.mode = modes_list[ind]
m['ps_mesh'].remove_all_quantities()
if opts.m_alt is not None:
opts.m_alt['ps_mesh'].remove_all_quantities()
elif opts.mode == 'feature_explore':
psim.TextUnformatted("Click on the mesh on the left")
psim.TextUnformatted("to highlight all faces within a given radius in feature space.""")
io = psim.GetIO()
if io.MouseClicked[0] or opts.continuous_explore:
screen_coords = io.MousePos
cam_params = ps.get_view_camera_parameters()
pick_result = ps.pick(screen_coords=screen_coords)
# Check if we hit one of the meshes
if pick_result.is_hit and pick_result.structure_name == "mesh":
if pick_result.structure_data['element_type'] != "face":
# shouldn't be possible
raise ValueError("pick returned non-face")
f_hit = pick_result.structure_data['index']
bary_weights = np.array(pick_result.structure_data['bary_coords'])
# get the feature via interpolation
point_feat = m['feat_np'][f_hit,:]
point_feat_pt = torch.tensor(point_feat, device='cuda')
all_dists1 = feature_distance_pt(m['feat_pt'], point_feat_pt).detach().cpu().numpy()
m['ps_mesh'].add_scalar_quantity("distance", all_dists1, cmap='blues', vminmax=(0, opts.feature_range), enabled=True, defined_on=m["viz_mode"])
opts.m['scalar'] = all_dists1
if opts.m_alt is not None:
all_dists2 = feature_distance_pt(opts.m_alt['feat_pt'], point_feat_pt).detach().cpu().numpy()
opts.m_alt['ps_mesh'].add_scalar_quantity("distance", all_dists2, cmap='blues', vminmax=(0, opts.feature_range), enabled=True, defined_on=m["viz_mode"])
opts.m_alt['scalar'] = all_dists2
else:
# not hit
pass
if psim.Button("Export"):
### Save output
OUTPUT_FOL = opts.output_fol
fname1 = opts.filename
out_mesh_file = os.path.join(OUTPUT_FOL, fname1+'.obj')
igl.write_obj(out_mesh_file, opts.m["V"], opts.m["F"])
print("Saved '{}'.".format(out_mesh_file))
out_face_ids_file = os.path.join(OUTPUT_FOL, fname1 + '_feat_dist_' + str(opts.counter) +'.txt')
np.savetxt(out_face_ids_file, opts.m['scalar'], fmt='%f')
print("Saved '{}'.".format(out_face_ids_file))
fname2 = opts.filename_alt
out_mesh_file = os.path.join(OUTPUT_FOL, fname2+'.obj')
igl.write_obj(out_mesh_file, opts.m_alt["V"], opts.m_alt["F"])
print("Saved '{}'.".format(out_mesh_file))
out_face_ids_file = os.path.join(OUTPUT_FOL, fname2 + '_feat_dist_' + str(opts.counter) +'.txt')
np.savetxt(out_face_ids_file, opts.m_alt['scalar'], fmt='%f')
# print("Saved '{}'.".format(out_face_ids_file))
opts.counter += 1
_, opts.feature_range = psim.SliderFloat('range', opts.feature_range, v_min=0., v_max=1.0, power=3)
_, opts.continuous_explore = psim.Checkbox('continuous', opts.continuous_explore)
# TODO nsharp remember how the keycodes work
if io.KeysDown[ord('q')]:
opts.feature_range += 0.01
if io.KeysDown[ord('w')]:
opts.feature_range -= 0.01
elif opts.mode == "co-segmentation":
changed, opts.source_init = psim.Checkbox("Source Init", opts.source_init)
changed, opts.independent = psim.Checkbox("Independent", opts.independent)
psim.TextUnformatted("Use the slider to toggle the number of desired clusters.")
cluster_changed, opts.i_cluster = psim.SliderInt("num clusters for model1", opts.i_cluster, v_min=1, v_max=30)
cluster_changed, opts.i_cluster2 = psim.SliderInt("num clusters for model2", opts.i_cluster2, v_min=1, v_max=30)
# if cluster_changed:
if psim.Button("Recompute"):
### Run clustering algorithm
### Mesh 1
num_clusters1 = opts.i_cluster
point_feat1 = m['feat_np']
point_feat1 = point_feat1 / np.linalg.norm(point_feat1, axis=-1, keepdims=True)
clustering1 = KMeans(n_clusters=num_clusters1, random_state=0, n_init="auto").fit(point_feat1)
### Get feature means per cluster
feature_means1 = []
for j in range(num_clusters1):
all_cluster_feat = point_feat1[clustering1.labels_==j]
mean_feat = np.mean(all_cluster_feat, axis=0)
feature_means1.append(mean_feat)
feature_means1 = np.array(feature_means1)
tree = KDTree(feature_means1)
if opts.source_init:
num_clusters2 = opts.i_cluster
init_mode = np.array(feature_means1)
## default is kmeans++
else:
num_clusters2 = opts.i_cluster2
init_mode = "k-means++"
### Mesh 2
point_feat2 = opts.m_alt['feat_np']
point_feat2 = point_feat2 / np.linalg.norm(point_feat2, axis=-1, keepdims=True)
clustering2 = KMeans(n_clusters=num_clusters2, random_state=0, init=init_mode).fit(point_feat2)
### Get feature means per cluster
feature_means2 = []
for j in range(num_clusters2):
all_cluster_feat = point_feat2[clustering2.labels_==j]
mean_feat = np.mean(all_cluster_feat, axis=0)
feature_means2.append(mean_feat)
feature_means2 = np.array(feature_means2)
_, nn_idx = tree.query(feature_means2, k=1)
print(nn_idx)
print("Both KMeans")
print(np.unique(clustering1.labels_))
print(np.unique(clustering2.labels_))
relabelled_2 = nn_idx[clustering2.labels_]
print(np.unique(relabelled_2))
print()
m['ps_mesh'].add_scalar_quantity("cluster_both_kmeans", clustering1.labels_, cmap='turbo', vminmax=(0, num_clusters1-1), enabled=True, defined_on=m["viz_mode"])
opts.m['label'] = clustering1.labels_
opts.m['num_cluster'] = num_clusters1
if opts.independent:
opts.m_alt['ps_mesh'].add_scalar_quantity("cluster", clustering2.labels_, cmap='turbo', vminmax=(0, num_clusters2-1), enabled=True, defined_on=m["viz_mode"])
opts.m_alt['label'] = clustering2.labels_
opts.m_alt['num_cluster'] = num_clusters2
else:
opts.m_alt['ps_mesh'].add_scalar_quantity("cluster", relabelled_2, cmap='turbo', vminmax=(0, num_clusters1-1), enabled=True, defined_on=m["viz_mode"])
opts.m_alt['label'] = relabelled_2
opts.m_alt['num_cluster'] = num_clusters1
if psim.Button("Export"):
### Save output
OUTPUT_FOL = opts.output_fol
fname1 = opts.filename
out_mesh_file = os.path.join(OUTPUT_FOL, fname1+'.obj')
igl.write_obj(out_mesh_file, opts.m["V"], opts.m["F"])
print("Saved '{}'.".format(out_mesh_file))
if m["viz_mode"] == "faces":
out_face_ids_file = os.path.join(OUTPUT_FOL, fname1 + "_" + str(opts.m['num_cluster']) + '_pred_face_ids.txt')
else:
out_face_ids_file = os.path.join(OUTPUT_FOL, fname1 + "_" + str(opts.m['num_cluster']) + '_pred_vertices_ids.txt')
np.savetxt(out_face_ids_file, opts.m['label'], fmt='%d')
print("Saved '{}'.".format(out_face_ids_file))
fname2 = opts.filename_alt
out_mesh_file = os.path.join(OUTPUT_FOL, fname2 +'.obj')
igl.write_obj(out_mesh_file, opts.m_alt["V"], opts.m_alt["F"])
print("Saved '{}'.".format(out_mesh_file))
if m["viz_mode"] == "faces":
out_face_ids_file = os.path.join(OUTPUT_FOL, fname2 + "_" + str(opts.m_alt['num_cluster']) + '_pred_face_ids.txt')
else:
out_face_ids_file = os.path.join(OUTPUT_FOL, fname2 + "_" + str(opts.m_alt['num_cluster']) + '_pred_vertices_ids.txt')
np.savetxt(out_face_ids_file, opts.m_alt['label'], fmt='%d')
print("Saved '{}'.".format(out_face_ids_file))
def main():
## Parse args
# Uses simple_parsing library to automatically construct parser from the dataclass Options
parser = ArgumentParser()
parser.add_arguments(Options, dest="options")
parser.add_argument('--data_root', default="../exp_results/partfield_features/trellis", help='Path the model features are stored.')
args = parser.parse_args()
opts: Options = args.options
DATA_ROOT = args.data_root
shape_1 = opts.filename
shape_2 = opts.filename_alt
if os.path.exists(os.path.join(DATA_ROOT, "part_feat_"+ shape_1 + "_0.npy")):
feature_fname1 = os.path.join(DATA_ROOT, "part_feat_"+ shape_1 + "_0.npy")
feature_fname2 = os.path.join(DATA_ROOT, "part_feat_"+ shape_2 + "_0.npy")
mesh_fname1 = os.path.join(DATA_ROOT, "feat_pca_"+ shape_1 + "_0.ply")
mesh_fname2 = os.path.join(DATA_ROOT, "feat_pca_"+ shape_2 + "_0.ply")
else:
feature_fname1 = os.path.join(DATA_ROOT, "part_feat_"+ shape_1 + "_0_batch.npy")
feature_fname2 = os.path.join(DATA_ROOT, "part_feat_"+ shape_2 + "_0_batch.npy")
mesh_fname1 = os.path.join(DATA_ROOT, "feat_pca_"+ shape_1 + "_0.ply")
mesh_fname2 = os.path.join(DATA_ROOT, "feat_pca_"+ shape_2 + "_0.ply")
#### To save output ####
os.makedirs(opts.output_fol, exist_ok=True)
########################
# Initialize
ps.init()
mesh_dict = load_features(feature_fname1, mesh_fname1, opts.viz_mode)
prep_feature_mesh(mesh_dict)
mesh_dict["viz_mode"] = opts.viz_mode
opts.m = mesh_dict
mesh_dict_alt = load_features(feature_fname2, mesh_fname2, opts.viz_mode)
prep_feature_mesh(mesh_dict_alt, name='mesh_alt')
mesh_dict_alt['ps_mesh'].translate((2.5, 0., 0.))
mesh_dict_alt["viz_mode"] = opts.viz_mode
opts.m_alt = mesh_dict_alt
# Start the interactive UI
ps.set_user_callback(lambda : ps_callback(opts))
ps.show()
if __name__ == "__main__":
main()