particulate / PartField /run_part_clustering.py
Ruining Li
Init: add PartField + particulate, track example assets via LFS
4f22fc0
from sklearn.cluster import AgglomerativeClustering, KMeans
import numpy as np
import trimesh
import matplotlib.pyplot as plt
import numpy as np
import os
import argparse
import time
import json
from os.path import join
from typing import List
from collections import defaultdict
from scipy.sparse import coo_matrix, csr_matrix
from scipy.sparse.csgraph import connected_components
from sklearn.neighbors import NearestNeighbors
import networkx as nx
from plyfile import PlyData
import open3d as o3d
from partfield.utils import *
#### Export to file #####
def export_colored_mesh_ply(V, F, FL, filename='segmented_mesh.ply'):
"""
Export a mesh with per-face segmentation labels into a colored PLY file.
Parameters:
- V (np.ndarray): Vertices array of shape (N, 3)
- F (np.ndarray): Faces array of shape (M, 3)
- FL (np.ndarray): Face labels of shape (M,)
- filename (str): Output filename
"""
assert V.shape[1] == 3
assert F.shape[1] == 3
assert F.shape[0] == FL.shape[0]
# Generate distinct colors for each unique label
unique_labels = np.unique(FL)
colormap = plt.cm.get_cmap("tab20", len(unique_labels))
label_to_color = {
label: (np.array(colormap(i)[:3]) * 255).astype(np.uint8)
for i, label in enumerate(unique_labels)
}
mesh = trimesh.Trimesh(vertices=V, faces=F)
FL = np.squeeze(FL)
for i, face in enumerate(F):
label = FL[i]
color = label_to_color[label]
color_with_alpha = np.append(color, 255) # Add alpha value
mesh.visual.face_colors[i] = color_with_alpha
mesh.export(filename)
print(f"Exported mesh to {filename}")
def export_pointcloud_with_labels_to_ply(V, VL, filename='colored_pointcloud.ply'):
"""
Export a labeled point cloud to a PLY file with vertex colors.
Parameters:
- V: (N, 3) numpy array of XYZ coordinates
- VL: (N,) numpy array of integer labels
- filename: Output PLY file name
"""
assert V.shape[0] == VL.shape[0], "Number of vertices and labels must match"
# Generate unique colors for each label
unique_labels = np.unique(VL)
colormap = plt.cm.get_cmap("tab20", len(unique_labels))
label_to_color = {
label: colormap(i)[:3] for i, label in enumerate(unique_labels)
}
VL = np.squeeze(VL)
# Map labels to RGB colors
colors = np.array([label_to_color[label] for label in VL])
# Open3D requires colors in float [0, 1]
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(V)
pcd.colors = o3d.utility.Vector3dVector(colors)
# Save to .ply
o3d.io.write_point_cloud(filename, pcd)
print(f"Point cloud saved to {filename}")
#########################
#########################
def construct_face_adjacency_matrix_ccmst(face_list, vertices, k=10, with_knn=True):
"""
Given a list of faces (each face is a 3-tuple of vertex indices),
construct a face-based adjacency matrix of shape (num_faces, num_faces).
Two faces are adjacent if they share an edge (the "mesh adjacency").
If multiple connected components remain, we:
1) Compute the centroid of each connected component as the mean of all face centroids.
2) Use a KNN graph (k=10) based on centroid distances on each connected component.
3) Compute MST of that KNN graph.
4) Add MST edges that connect different components as "dummy" edges
in the face adjacency matrix, ensuring one connected component. The selected face for
each connected component is the face closest to the component centroid.
Parameters
----------
face_list : list of tuples
List of faces, each face is a tuple (v0, v1, v2) of vertex indices.
vertices : np.ndarray of shape (num_vertices, 3)
Array of vertex coordinates.
k : int, optional
Number of neighbors to use in centroid KNN. Default is 10.
Returns
-------
face_adjacency : scipy.sparse.csr_matrix
A CSR sparse matrix of shape (num_faces, num_faces),
containing 1s for adjacent faces (shared-edge adjacency)
plus dummy edges ensuring a single connected component.
"""
num_faces = len(face_list)
if num_faces == 0:
# Return an empty matrix if no faces
return csr_matrix((0, 0))
#--------------------------------------------------------------------------
# 1) Build adjacency based on shared edges.
# (Same logic as the original code, plus import statements.)
#--------------------------------------------------------------------------
edge_to_faces = defaultdict(list)
uf = UnionFind(num_faces)
for f_idx, (v0, v1, v2) in enumerate(face_list):
# Sort each edge’s endpoints so (i, j) == (j, i)
edges = [
tuple(sorted((v0, v1))),
tuple(sorted((v1, v2))),
tuple(sorted((v2, v0)))
]
for e in edges:
edge_to_faces[e].append(f_idx)
row = []
col = []
for edge, face_indices in edge_to_faces.items():
unique_faces = list(set(face_indices))
if len(unique_faces) > 1:
# For every pair of distinct faces that share this edge,
# mark them as mutually adjacent
for i in range(len(unique_faces)):
for j in range(i + 1, len(unique_faces)):
fi = unique_faces[i]
fj = unique_faces[j]
row.append(fi)
col.append(fj)
row.append(fj)
col.append(fi)
uf.union(fi, fj)
data = np.ones(len(row), dtype=np.int8)
face_adjacency = coo_matrix(
(data, (row, col)), shape=(num_faces, num_faces)
).tocsr()
#--------------------------------------------------------------------------
# 2) Check if the graph from shared edges is already connected.
#--------------------------------------------------------------------------
n_components = 0
for i in range(num_faces):
if uf.find(i) == i:
n_components += 1
print("n_components", n_components)
if n_components == 1:
# Already a single connected component, no need for dummy edges
return face_adjacency
#--------------------------------------------------------------------------
# 3) Compute centroids of each face for building a KNN graph.
#--------------------------------------------------------------------------
face_centroids = []
for (v0, v1, v2) in face_list:
centroid = (vertices[v0] + vertices[v1] + vertices[v2]) / 3.0
face_centroids.append(centroid)
face_centroids = np.array(face_centroids)
# #--------------------------------------------------------------------------
# # 4a) Build a KNN graph (k=10) over face centroids using scikit‐learn
# #--------------------------------------------------------------------------
# knn = NearestNeighbors(n_neighbors=k, algorithm='auto')
# knn.fit(face_centroids)
# distances, indices = knn.kneighbors(face_centroids)
# # 'distances[i]' are the distances from face i to each of its 'k' neighbors
# # 'indices[i]' are the face indices of those neighbors
#--------------------------------------------------------------------------
# 4b) Build a KNN graph on connected components
#--------------------------------------------------------------------------
# Group faces by their root representative in the Union-Find structure
component_dict = {}
for face_idx in range(num_faces):
root = uf.find(face_idx)
if root not in component_dict:
component_dict[root] = set()
component_dict[root].add(face_idx)
connected_components = list(component_dict.values())
print("Using connected component MST.")
component_centroid_face_idx = []
connected_component_centroids = []
knn = NearestNeighbors(n_neighbors=1, algorithm='auto')
for component in connected_components:
curr_component_faces = list(component)
curr_component_face_centroids = face_centroids[curr_component_faces]
component_centroid = np.mean(curr_component_face_centroids, axis=0)
### Assign a face closest to the centroid
face_idx = curr_component_faces[np.argmin(np.linalg.norm(curr_component_face_centroids-component_centroid, axis=-1))]
connected_component_centroids.append(component_centroid)
component_centroid_face_idx.append(face_idx)
component_centroid_face_idx = np.array(component_centroid_face_idx)
connected_component_centroids = np.array(connected_component_centroids)
if n_components < k:
knn = NearestNeighbors(n_neighbors=n_components, algorithm='auto')
else:
knn = NearestNeighbors(n_neighbors=k, algorithm='auto')
knn.fit(connected_component_centroids)
distances, indices = knn.kneighbors(connected_component_centroids)
#--------------------------------------------------------------------------
# 5) Build a weighted graph in NetworkX using centroid-distances as edges
#--------------------------------------------------------------------------
G = nx.Graph()
# Add each face as a node in the graph
G.add_nodes_from(range(num_faces))
# For each face i, add edges (i -> j) for each neighbor j in the KNN
for idx1 in range(n_components):
i = component_centroid_face_idx[idx1]
for idx2, dist in zip(indices[idx1], distances[idx1]):
j = component_centroid_face_idx[idx2]
if i == j:
continue # skip self-loop
# Add an undirected edge with 'weight' = distance
# NetworkX handles parallel edges gracefully via last add_edge,
# but it typically overwrites the weight if (i, j) already exists.
G.add_edge(i, j, weight=dist)
#--------------------------------------------------------------------------
# 6) Compute MST on that KNN graph
#--------------------------------------------------------------------------
mst = nx.minimum_spanning_tree(G, weight='weight')
# Sort MST edges by ascending weight, so we add the shortest edges first
mst_edges_sorted = sorted(
mst.edges(data=True), key=lambda e: e[2]['weight']
)
print("mst edges sorted", len(mst_edges_sorted))
#--------------------------------------------------------------------------
# 7) Use a union-find structure to add MST edges only if they
# connect two currently disconnected components of the adjacency matrix
#--------------------------------------------------------------------------
# Convert face_adjacency to LIL format for efficient edge addition
adjacency_lil = face_adjacency.tolil()
# Now, step through MST edges in ascending order
for (u, v, attr) in mst_edges_sorted:
if uf.find(u) != uf.find(v):
# These belong to different components, so unify them
uf.union(u, v)
# And add a "dummy" edge to our adjacency matrix
adjacency_lil[u, v] = 1
adjacency_lil[v, u] = 1
# Convert back to CSR format and return
face_adjacency = adjacency_lil.tocsr()
if with_knn:
print("Adding KNN edges.")
### Add KNN edges graph too
dummy_row = []
dummy_col = []
for idx1 in range(n_components):
i = component_centroid_face_idx[idx1]
for idx2 in indices[idx1]:
j = component_centroid_face_idx[idx2]
dummy_row.extend([i, j])
dummy_col.extend([j, i]) ### duplicates are handled by coo
dummy_data = np.ones(len(dummy_row), dtype=np.int16)
dummy_mat = coo_matrix(
(dummy_data, (dummy_row, dummy_col)),
shape=(num_faces, num_faces)
).tocsr()
face_adjacency = face_adjacency + dummy_mat
###########################
return face_adjacency
#########################
def construct_face_adjacency_matrix_facemst(face_list, vertices, k=10, with_knn=True):
"""
Given a list of faces (each face is a 3-tuple of vertex indices),
construct a face-based adjacency matrix of shape (num_faces, num_faces).
Two faces are adjacent if they share an edge (the "mesh adjacency").
If multiple connected components remain, we:
1) Compute the centroid of each face.
2) Use a KNN graph (k=10) based on centroid distances.
3) Compute MST of that KNN graph.
4) Add MST edges that connect different components as "dummy" edges
in the face adjacency matrix, ensuring one connected component.
Parameters
----------
face_list : list of tuples
List of faces, each face is a tuple (v0, v1, v2) of vertex indices.
vertices : np.ndarray of shape (num_vertices, 3)
Array of vertex coordinates.
k : int, optional
Number of neighbors to use in centroid KNN. Default is 10.
Returns
-------
face_adjacency : scipy.sparse.csr_matrix
A CSR sparse matrix of shape (num_faces, num_faces),
containing 1s for adjacent faces (shared-edge adjacency)
plus dummy edges ensuring a single connected component.
"""
num_faces = len(face_list)
if num_faces == 0:
# Return an empty matrix if no faces
return csr_matrix((0, 0))
#--------------------------------------------------------------------------
# 1) Build adjacency based on shared edges.
# (Same logic as the original code, plus import statements.)
#--------------------------------------------------------------------------
edge_to_faces = defaultdict(list)
uf = UnionFind(num_faces)
for f_idx, (v0, v1, v2) in enumerate(face_list):
# Sort each edge’s endpoints so (i, j) == (j, i)
edges = [
tuple(sorted((v0, v1))),
tuple(sorted((v1, v2))),
tuple(sorted((v2, v0)))
]
for e in edges:
edge_to_faces[e].append(f_idx)
row = []
col = []
for edge, face_indices in edge_to_faces.items():
unique_faces = list(set(face_indices))
if len(unique_faces) > 1:
# For every pair of distinct faces that share this edge,
# mark them as mutually adjacent
for i in range(len(unique_faces)):
for j in range(i + 1, len(unique_faces)):
fi = unique_faces[i]
fj = unique_faces[j]
row.append(fi)
col.append(fj)
row.append(fj)
col.append(fi)
uf.union(fi, fj)
data = np.ones(len(row), dtype=np.int8)
face_adjacency = coo_matrix(
(data, (row, col)), shape=(num_faces, num_faces)
).tocsr()
#--------------------------------------------------------------------------
# 2) Check if the graph from shared edges is already connected.
#--------------------------------------------------------------------------
n_components = 0
for i in range(num_faces):
if uf.find(i) == i:
n_components += 1
print("n_components", n_components)
if n_components == 1:
# Already a single connected component, no need for dummy edges
return face_adjacency
#--------------------------------------------------------------------------
# 3) Compute centroids of each face for building a KNN graph.
#--------------------------------------------------------------------------
face_centroids = []
for (v0, v1, v2) in face_list:
centroid = (vertices[v0] + vertices[v1] + vertices[v2]) / 3.0
face_centroids.append(centroid)
face_centroids = np.array(face_centroids)
#--------------------------------------------------------------------------
# 4) Build a KNN graph (k=10) over face centroids using scikit‐learn
#--------------------------------------------------------------------------
knn = NearestNeighbors(n_neighbors=k, algorithm='auto')
knn.fit(face_centroids)
distances, indices = knn.kneighbors(face_centroids)
# 'distances[i]' are the distances from face i to each of its 'k' neighbors
# 'indices[i]' are the face indices of those neighbors
#--------------------------------------------------------------------------
# 5) Build a weighted graph in NetworkX using centroid-distances as edges
#--------------------------------------------------------------------------
G = nx.Graph()
# Add each face as a node in the graph
G.add_nodes_from(range(num_faces))
# For each face i, add edges (i -> j) for each neighbor j in the KNN
for i in range(num_faces):
for j, dist in zip(indices[i], distances[i]):
if i == j:
continue # skip self-loop
# Add an undirected edge with 'weight' = distance
# NetworkX handles parallel edges gracefully via last add_edge,
# but it typically overwrites the weight if (i, j) already exists.
G.add_edge(i, j, weight=dist)
#--------------------------------------------------------------------------
# 6) Compute MST on that KNN graph
#--------------------------------------------------------------------------
mst = nx.minimum_spanning_tree(G, weight='weight')
# Sort MST edges by ascending weight, so we add the shortest edges first
mst_edges_sorted = sorted(
mst.edges(data=True), key=lambda e: e[2]['weight']
)
print("mst edges sorted", len(mst_edges_sorted))
#--------------------------------------------------------------------------
# 7) Use a union-find structure to add MST edges only if they
# connect two currently disconnected components of the adjacency matrix
#--------------------------------------------------------------------------
# Convert face_adjacency to LIL format for efficient edge addition
adjacency_lil = face_adjacency.tolil()
# Now, step through MST edges in ascending order
for (u, v, attr) in mst_edges_sorted:
if uf.find(u) != uf.find(v):
# These belong to different components, so unify them
uf.union(u, v)
# And add a "dummy" edge to our adjacency matrix
adjacency_lil[u, v] = 1
adjacency_lil[v, u] = 1
# Convert back to CSR format and return
face_adjacency = adjacency_lil.tocsr()
if with_knn:
print("Adding KNN edges.")
### Add KNN edges graph too
dummy_row = []
dummy_col = []
for i in range(num_faces):
for j in indices[i]:
dummy_row.extend([i, j])
dummy_col.extend([j, i]) ### duplicates are handled by coo
dummy_data = np.ones(len(dummy_row), dtype=np.int16)
dummy_mat = coo_matrix(
(dummy_data, (dummy_row, dummy_col)),
shape=(num_faces, num_faces)
).tocsr()
face_adjacency = face_adjacency + dummy_mat
###########################
return face_adjacency
def construct_face_adjacency_matrix_naive(face_list):
"""
Given a list of faces (each face is a 3-tuple of vertex indices),
construct a face-based adjacency matrix of shape (num_faces, num_faces).
Two faces are adjacent if they share an edge.
If multiple connected components exist, dummy edges are added to
turn them into a single connected component. Edges are added naively by
randomly selecting a face and connecting consecutive components -- (comp_i, comp_i+1) ...
Parameters
----------
face_list : list of tuples
List of faces, each face is a tuple (v0, v1, v2) of vertex indices.
Returns
-------
face_adjacency : scipy.sparse.csr_matrix
A CSR sparse matrix of shape (num_faces, num_faces),
containing 1s for adjacent faces and 0s otherwise.
Additional edges are added if the faces are in multiple components.
"""
num_faces = len(face_list)
if num_faces == 0:
# Return an empty matrix if no faces
return csr_matrix((0, 0))
# Step 1: Map each undirected edge -> list of face indices that contain that edge
edge_to_faces = defaultdict(list)
# Populate the edge_to_faces dictionary
for f_idx, (v0, v1, v2) in enumerate(face_list):
# For an edge, we always store its endpoints in sorted order
# to avoid duplication (e.g. edge (2,5) is the same as (5,2)).
edges = [
tuple(sorted((v0, v1))),
tuple(sorted((v1, v2))),
tuple(sorted((v2, v0)))
]
for e in edges:
edge_to_faces[e].append(f_idx)
# Step 2: Build the adjacency (row, col) lists among faces
row = []
col = []
for e, faces_sharing_e in edge_to_faces.items():
# If an edge is shared by multiple faces, make each pair of those faces adjacent
f_indices = list(set(faces_sharing_e)) # unique face indices for this edge
if len(f_indices) > 1:
# For each pair of faces, mark them as adjacent
for i in range(len(f_indices)):
for j in range(i + 1, len(f_indices)):
f_i = f_indices[i]
f_j = f_indices[j]
row.append(f_i)
col.append(f_j)
row.append(f_j)
col.append(f_i)
# Create a COO matrix, then convert it to CSR
data = np.ones(len(row), dtype=np.int8)
face_adjacency = coo_matrix(
(data, (row, col)),
shape=(num_faces, num_faces)
).tocsr()
# Step 3: Ensure single connected component
# Use connected_components to see how many components exist
n_components, labels = connected_components(face_adjacency, directed=False)
if n_components > 1:
# We have multiple components; let's "connect" them via dummy edges
# The simplest approach is to pick one face from each component
# and connect them sequentially to enforce a single component.
component_representatives = []
for comp_id in range(n_components):
# indices of faces in this component
faces_in_comp = np.where(labels == comp_id)[0]
if len(faces_in_comp) > 0:
# take the first face in this component as a representative
component_representatives.append(faces_in_comp[0])
# Now, add edges between consecutive representatives
dummy_row = []
dummy_col = []
for i in range(len(component_representatives) - 1):
f_i = component_representatives[i]
f_j = component_representatives[i + 1]
dummy_row.extend([f_i, f_j])
dummy_col.extend([f_j, f_i])
if dummy_row:
dummy_data = np.ones(len(dummy_row), dtype=np.int8)
dummy_mat = coo_matrix(
(dummy_data, (dummy_row, dummy_col)),
shape=(num_faces, num_faces)
).tocsr()
face_adjacency = face_adjacency + dummy_mat
return face_adjacency
class UnionFind:
def __init__(self, n):
self.parent = list(range(n))
self.rank = [1] * n
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, x, y):
rootX = self.find(x)
rootY = self.find(y)
if rootX != rootY:
if self.rank[rootX] > self.rank[rootY]:
self.parent[rootY] = rootX
elif self.rank[rootX] < self.rank[rootY]:
self.parent[rootX] = rootY
else:
self.parent[rootY] = rootX
self.rank[rootX] += 1
def hierarchical_clustering_labels(children, n_samples, max_cluster=20):
# Union-Find structure to maintain cluster merges
uf = UnionFind(2 * n_samples - 1) # We may need to store up to 2*n_samples - 1 clusters
current_cluster_count = n_samples
# Process merges from the children array
hierarchical_labels = []
for i, (child1, child2) in enumerate(children):
uf.union(child1, i + n_samples)
uf.union(child2, i + n_samples)
#uf.union(child1, child2)
current_cluster_count -= 1 # After each merge, we reduce the cluster count
if current_cluster_count <= max_cluster:
labels = [uf.find(i) for i in range(n_samples)]
hierarchical_labels.append(labels)
return hierarchical_labels
def load_ply_to_numpy(filename):
"""
Load a PLY file and extract the point cloud as a (N, 3) NumPy array.
Parameters:
filename (str): Path to the PLY file.
Returns:
numpy.ndarray: Point cloud array of shape (N, 3).
"""
# Read PLY file
ply_data = PlyData.read(filename)
# Extract vertex data
vertex_data = ply_data["vertex"]
# Convert to NumPy array (x, y, z)
points = np.vstack([vertex_data["x"], vertex_data["y"], vertex_data["z"]]).T
return points
def solve_clustering(input_fname, uid, view_id, save_dir="test_results1", out_render_fol= "test_render_clustering", use_agglo=False, max_num_clusters=18, is_pc=False, option=1, with_knn=True, export_mesh=True):
print(uid, view_id)
if not is_pc:
input_fname = f'{save_dir}/input_{uid}_{view_id}.ply'
mesh = load_mesh_util(input_fname)
else:
pc = load_ply_to_numpy(input_fname)
### Load inferred PartField features
try:
point_feat = np.load(f'{save_dir}/part_feat_{uid}_{view_id}.npy')
except:
try:
point_feat = np.load(f'{save_dir}/part_feat_{uid}_{view_id}_batch.npy')
except:
print()
print("pointfeat loading error. skipping...")
print(f'{save_dir}/part_feat_{uid}_{view_id}_batch.npy')
return
point_feat = point_feat / np.linalg.norm(point_feat, axis=-1, keepdims=True)
if not use_agglo:
for num_cluster in range(2, max_num_clusters):
clustering = KMeans(n_clusters=num_cluster, random_state=0).fit(point_feat)
labels = clustering.labels_
pred_labels = np.zeros((len(labels), 1))
for i, label in enumerate(np.unique(labels)):
# print(i, label)
pred_labels[labels == label] = i # Assign RGB values to each label
fname_clustering = os.path.join(out_render_fol, "cluster_out", str(uid) + "_" + str(view_id) + "_" + str(num_cluster).zfill(2))
np.save(fname_clustering, pred_labels)
if not is_pc:
V = mesh.vertices
F = mesh.faces
if export_mesh :
fname_mesh = os.path.join(out_render_fol, "ply", str(uid) + "_" + str(view_id) + "_" + str(num_cluster).zfill(2) + ".ply")
export_colored_mesh_ply(V, F, pred_labels, filename=fname_mesh)
else:
if export_mesh:
fname_pc = os.path.join(out_render_fol, "ply", str(uid) + "_" + str(view_id) + "_" + str(num_cluster).zfill(2) + ".ply")
export_pointcloud_with_labels_to_ply(pc, pred_labels, filename=fname_pc)
else:
if is_pc:
print("Not implemented error. Agglomerative clustering only for mesh inputs.")
exit()
if option == 0:
adj_matrix = construct_face_adjacency_matrix_naive(mesh.faces)
elif option == 1:
adj_matrix = construct_face_adjacency_matrix_facemst(mesh.faces, mesh.vertices, with_knn=with_knn)
else:
adj_matrix = construct_face_adjacency_matrix_ccmst(mesh.faces, mesh.vertices, with_knn=with_knn)
clustering = AgglomerativeClustering(connectivity=adj_matrix,
n_clusters=1,
).fit(point_feat)
hierarchical_labels = hierarchical_clustering_labels(clustering.children_, point_feat.shape[0], max_cluster=max_num_clusters)
all_FL = []
for n_cluster in range(max_num_clusters):
print("Processing cluster: "+str(n_cluster))
labels = hierarchical_labels[n_cluster]
all_FL.append(labels)
all_FL = np.array(all_FL)
unique_labels = np.unique(all_FL)
for n_cluster in range(max_num_clusters):
FL = all_FL[n_cluster]
relabel = np.zeros((len(FL), 1))
for i, label in enumerate(unique_labels):
relabel[FL == label] = i # Assign RGB values to each label
V = mesh.vertices
F = mesh.faces
if export_mesh :
fname_mesh = os.path.join(out_render_fol, "ply", str(uid) + "_" + str(view_id) + "_" + str(max_num_clusters - n_cluster).zfill(2) + ".ply")
export_colored_mesh_ply(V, F, FL, filename=fname_mesh)
fname_clustering = os.path.join(out_render_fol, "cluster_out", str(uid) + "_" + str(view_id) + "_" + str(max_num_clusters - n_cluster).zfill(2))
np.save(fname_clustering, FL)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--source_dir', default= "", type=str)
parser.add_argument('--root', default= "", type=str)
parser.add_argument('--dump_dir', default= "", type=str)
parser.add_argument('--max_num_clusters', default= 20, type=int)
parser.add_argument('--use_agglo', default= False, type=bool)
parser.add_argument('--is_pc', default= False, type=bool)
parser.add_argument('--option', default= 1, type=int)
parser.add_argument('--with_knn', default= False, type=bool)
parser.add_argument('--export_mesh', default= True, type=bool)
FLAGS = parser.parse_args()
root = FLAGS.root
OUTPUT_FOL = FLAGS.dump_dir
SOURCE_DIR = FLAGS.source_dir
MAX_NUM_CLUSTERS = FLAGS.max_num_clusters
USE_AGGLO = FLAGS.use_agglo
IS_PC = FLAGS.is_pc
OPTION = FLAGS.option
WITH_KNN = FLAGS.with_knn
EXPORT_MESH = FLAGS.export_mesh
models = os.listdir(root)
os.makedirs(OUTPUT_FOL, exist_ok=True)
cluster_fol = os.path.join(OUTPUT_FOL, "cluster_out")
os.makedirs(cluster_fol, exist_ok=True)
if EXPORT_MESH:
ply_fol = os.path.join(OUTPUT_FOL, "ply")
os.makedirs(ply_fol, exist_ok=True)
#### Get existing model_ids ###
all_files = os.listdir(os.path.join(OUTPUT_FOL, "ply"))
existing_model_ids = []
for sample in all_files:
uid = sample.split("_")[0]
view_id = sample.split("_")[1]
# sample_name = str(uid) + "_" + str(view_id)
sample_name = str(uid)
if sample_name not in existing_model_ids:
existing_model_ids.append(sample_name)
##############################
all_files = os.listdir(SOURCE_DIR)
selected = []
for f in all_files:
if ".ply" in f and IS_PC and f.split(".")[0] not in existing_model_ids:
selected.append(f)
elif (".obj" in f or ".glb" in f) and not IS_PC and f.split(".")[0] not in existing_model_ids:
selected.append(f)
print("Number of models to process: " + str(len(selected)))
for model in selected:
fname = os.path.join(SOURCE_DIR, model)
uid = model.split(".")[-2]
view_id = 0
solve_clustering(fname, uid, view_id, save_dir=root, out_render_fol= OUTPUT_FOL, use_agglo=USE_AGGLO, max_num_clusters=MAX_NUM_CLUSTERS, is_pc=IS_PC, option=OPTION, with_knn=WITH_KNN, export_mesh=EXPORT_MESH)