Datasets:
Tasks:
Image Classification
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
ai-generated images
ai-generated image detection
test-set
deepfake
forgery-detection
computer-vision
License:
metadata
license: mit
tags:
- ai-generated images
- ai-generated image detection
- test-set
- deepfake
- forgery-detection
- computer-vision
task_categories:
- image-classification
language:
- en
dataset_info:
features:
- name: file_name
dtype: string
description: Relative path to the image under root.
- name: image
dtype: image
- name: is_real
dtype: string
- name: content_type
dtype: string
data_files:
- split: test
path: test.parquet
π Mirage-Test Dataset
Mirage-Test is a modern test-only dataset for benchmarking AI-generated image detection models.
It contains real (0_real) and fake (1_fake) images across five distinct content domains, designed to evaluate generalization across diverse visual semantics.
The fake images are generated using state-of-the-art generative models specifically optimized for perceptual realism and visual fidelity.
π This dataset is for evaluation only. No training split is provided.
π Dataset Structure
Images are organized hierarchically by content type and authenticity:
Mirage-Test/
βββ Animal/
β βββ 0_real/ # Real animal photos
β βββ 1_fake/ # AI-generated animal images
βββ Anime/
β βββ 1_fake/ # AI-generated anime-style images
βββ Human/
β βββ 0_real/ # Real human photos
β βββ 1_fake/ # AI-generated human images
βββ Object/
β βββ 0_real/ # Real object photos
β βββ 1_fake/ # AI-generated object images
βββ Scene/
β βββ 0_real/ # Real landscape/architecture photos
β βββ 1_fake/ # AI-generated scenes images
βββ metadata.parquet
βββ README.md
- Total samples: 49000
π₯ Downloading Raw Files
To download the dataset with original folder structure:
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="Yunncheng/Mirage-Test",
repo_type="dataset",
local_dir="./Mirage-Test"
)
π Acknowledgements
- Generated using state-of-the-art diffusion models (e.g., Stable Diffusion, FLUX)
- Real images sourced from publicly available, royalty-free image platforms (e.g., Pexels)
π Citation
If you find this work useful for your research, please cite our paper:
@article{guo2025omniaid,
title={OmniAID: Decoupling Semantic and Artifacts for Universal AI-Generated Image Detection in the Wild},
author={Guo, Yuncheng and Ye, Junyan and Zhang, Chenjue and Kang, Hengrui and Fu, Haohuan and He, Conghui and Li, Weijia},
journal={arXiv preprint arXiv:2511.08423},
year={2025}
}