Mirage-Test / README.md
Yunncheng's picture
Update README.md
6d2760e verified
metadata
license: mit
tags:
  - ai-generated images
  - ai-generated image detection
  - test-set
  - deepfake
  - forgery-detection
  - computer-vision
task_categories:
  - image-classification
language:
  - en
dataset_info:
  features:
    - name: file_name
      dtype: string
      description: Relative path to the image under root.
    - name: image
      dtype: image
    - name: is_real
      dtype: string
    - name: content_type
      dtype: string
  data_files:
    - split: test
      path: test.parquet

🌊 Mirage-Test Dataset

Paper GitHub Hugging Face Models Hugging Face Spaces License

Mirage-Test is a modern test-only dataset for benchmarking AI-generated image detection models. It contains real (0_real) and fake (1_fake) images across five distinct content domains, designed to evaluate generalization across diverse visual semantics. The fake images are generated using state-of-the-art generative models specifically optimized for perceptual realism and visual fidelity.

πŸ“Œ This dataset is for evaluation only. No training split is provided.

πŸ“ Dataset Structure

Images are organized hierarchically by content type and authenticity:

Mirage-Test/
β”œβ”€β”€ Animal/
β”‚ β”œβ”€β”€ 0_real/ # Real animal photos
β”‚ └── 1_fake/ # AI-generated animal images
β”œβ”€β”€ Anime/
β”‚ └── 1_fake/ # AI-generated anime-style images
β”œβ”€β”€ Human/
β”‚ β”œβ”€β”€ 0_real/ # Real human photos
β”‚ └── 1_fake/ # AI-generated human images
β”œβ”€β”€ Object/
β”‚ β”œβ”€β”€ 0_real/ # Real object photos
β”‚ └── 1_fake/ # AI-generated object images
β”œβ”€β”€ Scene/
β”‚ β”œβ”€β”€ 0_real/ # Real landscape/architecture photos
β”‚ └── 1_fake/ # AI-generated scenes images
β”œβ”€β”€ metadata.parquet
└── README.md
  • Total samples: 49000

πŸ“₯ Downloading Raw Files

To download the dataset with original folder structure:

from huggingface_hub import snapshot_download

snapshot_download(
    repo_id="Yunncheng/Mirage-Test",
    repo_type="dataset",
    local_dir="./Mirage-Test"
)

πŸ™ Acknowledgements

  • Generated using state-of-the-art diffusion models (e.g., Stable Diffusion, FLUX)
  • Real images sourced from publicly available, royalty-free image platforms (e.g., Pexels)

πŸ“ Citation

If you find this work useful for your research, please cite our paper:

@article{guo2025omniaid,
  title={OmniAID: Decoupling Semantic and Artifacts for Universal AI-Generated Image Detection in the Wild},
  author={Guo, Yuncheng and Ye, Junyan and Zhang, Chenjue and Kang, Hengrui and Fu, Haohuan and He, Conghui and Li, Weijia},
  journal={arXiv preprint arXiv:2511.08423},
  year={2025}
}