Datasets:
metadata
license: mit
task_categories:
- image-classification
- multi-label-classification
tags:
- food-recognition
- multi-label
- computer-vision
- food-classification
size_categories:
- 10K<n<100K
Multi-Label Food Recognition Dataset
This is a multi-label food recognition dataset generated from single-class food images. Each image contains 2-5 different food items composited together using natural composition methods.
Dataset Details
- Total Images: 13,000
- Training Images: 10,400 (80%)
- Validation Images: 2,600 (20%)
- Number of Classes: 90
- Labels per Image: 2-5 labels
- Image Format: RGB, 512x512 pixels
- File Format: Parquet
Dataset Structure
Each sample contains:
image: PIL Image (RGB, 512x512)labels: List of integer label IDs (multi-hot encoded)label_names: List of string class namesnum_labels: Number of labels in the image (2-5)
Usage
from datasets import load_dataset
# Load dataset
dataset = load_dataset("ibrahimdaud/multi-label-food-recognition")
# Access splits
train_data = dataset['train']
val_data = dataset['validation']
# Example: Get first training sample
sample = train_data[0]
print(f"Image: {sample['image']}")
print(f"Labels: {sample['label_names']}")
print(f"Label IDs: {sample['labels']}")
Citation
If you use this dataset, please cite:
@dataset{multi_label_food_recognition,
title={Multi-Label Food Recognition Dataset},
author={Your Name},
year={2024},
url={https://huggingface.co/datasets/ibrahimdaud/multi-label-food-recognition}
}
License
MIT License