maximuspowers's picture
Upload weight-space autoencoder (encoder + decoder) and configuration
a6b5967 verified
metadata
tags:
  - weight-space-learning
  - neural-network-autoencoder
  - autoencoder
  - transformer
datasets:
  - maximuspowers/muat-fourier-5

Weight-Space Autoencoder (TRANSFORMER)

This model is a weight-space autoencoder trained on neural network activation weights/signatures. It includes both an encoder (compresses weights into latent representations) and a decoder (reconstructs weights from latent codes).

Model Description

  • Architecture: Transformer encoder-decoder
  • Training Dataset: maximuspowers/muat-fourier-5
  • Input Mode: signature
  • Latent Dimension: 256

Tokenization

  • Granularity: neuron
  • Max Tokens: 64

Training Config

  • Loss Functions: reconstruction, contrastive, functional
  • Optimizer: adamw
  • Learning Rate: 0.0001
  • Batch Size: 32

Performance Metrics (Test Set)

  • MSE: 0.125011
  • MAE: 0.259796
  • RMSE: 0.353570
  • Cosine Similarity: 0.0348
  • R² Score: -0.0097