A newer version of the Gradio SDK is available:
6.1.0
metadata
title: T9 Oracle Entity Extractor
emoji: 🔬
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
hardware: t4-small
T9 Oracle Entity Extractor
Zero-shot NER for Medical Device Technical Documentation
This Space provides entity extraction using GLiNER Large (1.7GB) for technical documentation in the medical device domain.
Features
- 70 Entity Labels across 10 tiers
- Zero-shot learning - no training required
- Medical device focus - optimized for endoscope equipment, parts, specifications
- Hardware: NVIDIA T4 GPU for fast inference
Entity Types
Tier 1: Critical Identifiers
- part_number, component_name, manufacturer, model_number
Tier 2: Specifications
- pressure, temperature, voltage, current, material, dimensions, flow_rate, power
Tier 3: Standards & Compliance
- standard_reference (ISO, ASTM, EN, IEC, ANSI), certification, compliance
Tier 4-10: Additional Labels
- Thread standards, geometry, documentation, operational parameters, manufacturing IDs, medical device specific, visual elements, quality & maintenance
API Usage
from gradio_client import Client
client = Client("YOUR_USERNAME/t9-oracle-gliner-entity-extractor")
text = "Part Number: A70002-2, Material: SS316L, Pressure: 60 psi"
result = client.predict(text, api_name="/extract")
print(result)
Configuration
- Model: urchade/gliner_large-v2.1
- GPU: NVIDIA T4 (16GB VRAM)
- Cost: $0.60/hour (Persistent)
- Max input: 10,000 characters per request
Project
Part of the T9 Oracle Knowledge Base Extraction System for Auto Sink medical device documentation.