|
|
--- |
|
|
tags: |
|
|
- setfit |
|
|
- sentence-transformers |
|
|
- text-classification |
|
|
- generated_from_setfit_trainer |
|
|
widget: |
|
|
- text: Etunimi Sukunimi Kaunistelua sanoa että vain yhden ihmisen tähden. Putinin |
|
|
toimilla on Venäjällä laaja kannatus, kyllä kansakunnalla on myös kollektiivista |
|
|
vastuuta tapahtumista. Sotaa vastaan protestoivia on ollut vähemmän kuin Venäjällä |
|
|
sotilaita Ukrainassa. |
|
|
- text: Toivottavasti valtio korvaa jokaisen menetetyn euron |
|
|
- text: Etunimi Sukunimi Niin on.. ja valtioita joista lähinnä venäjä ja valko-venäjä. |
|
|
- text: www.maskikauppa.fi |
|
|
- text: Etunimi Sukunimi Jatka veikkonen. |
|
|
metrics: |
|
|
- metric |
|
|
pipeline_tag: text-classification |
|
|
library_name: setfit |
|
|
inference: true |
|
|
base_model: TurkuNLP/bert-base-finnish-cased-v1 |
|
|
model-index: |
|
|
- name: SetFit with TurkuNLP/bert-base-finnish-cased-v1 |
|
|
results: |
|
|
- task: |
|
|
type: text-classification |
|
|
name: Text Classification |
|
|
dataset: |
|
|
name: Unknown |
|
|
type: unknown |
|
|
split: test |
|
|
metrics: |
|
|
- type: metric |
|
|
value: 0.7911322719833359 |
|
|
name: Metric |
|
|
--- |
|
|
|
|
|
# SetFit with TurkuNLP/bert-base-finnish-cased-v1 |
|
|
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [TurkuNLP/bert-base-finnish-cased-v1](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** SetFit |
|
|
- **Sentence Transformer body:** [TurkuNLP/bert-base-finnish-cased-v1](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) |
|
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
|
- **Maximum Sequence Length:** 512 tokens |
|
|
- **Number of Classes:** 2 classes |
|
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
|
|
### Model Labels |
|
|
| Label | Examples | |
|
|
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
|
| 0 | <ul><li>'Etunimi Sukunimi katso tilastot ja vertaa funssiin'</li><li>'Ei muuta kuin Norjaan öljyostoksille 🙂'</li><li>'Etunimi Etunimi Härmä ja mitenköhän se yle ne anonyymit sinne haastatteluun saa jos he eivät itse ilmottaudu. Kun ovat noi potilastiedot salaisia.... joskus olis ihan hyvä hetki miettiä....🤔🤔'</li></ul> | |
|
|
| 1 | <ul><li>'Etunimi väittäisin, että paremmin he tämän hoitavat, kuin viimekertainen "poikalauma"'</li><li>'Eikö. Lisää piikkejä vaan niin hyvää tulee. Ne pelastaa. 😆'</li><li>'Etunimi Sukunimi perustuslakia ei ole rikottu niissä asioissa mitä convoypellet väitti, kaikki mitä kaverit väittää ei ole totta .'</li></ul> | |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
| Label | Metric | |
|
|
|:--------|:-------| |
|
|
| **all** | 0.7911 | |
|
|
|
|
|
## Uses |
|
|
|
|
|
### Direct Use for Inference |
|
|
|
|
|
First install the SetFit library: |
|
|
|
|
|
```bash |
|
|
pip install setfit |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
|
|
|
```python |
|
|
from setfit import SetFitModel |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SetFitModel.from_pretrained("Finnish-actions/SetFit-FinBERT1-A3-challenge") |
|
|
# Run inference |
|
|
preds = model("www.maskikauppa.fi") |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Downstream Use |
|
|
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Set Metrics |
|
|
| Training set | Min | Median | Max | |
|
|
|:-------------|:----|:--------|:----| |
|
|
| Word count | 1 | 20.2233 | 213 | |
|
|
|
|
|
| Label | Training Sample Count | |
|
|
|:------|:----------------------| |
|
|
| 0 | 843 | |
|
|
| 1 | 120 | |
|
|
|
|
|
### Training Hyperparameters |
|
|
- batch_size: (16, 16) |
|
|
- num_epochs: (4, 4) |
|
|
- max_steps: -1 |
|
|
- sampling_strategy: oversampling |
|
|
- num_iterations: 6 |
|
|
- body_learning_rate: (2e-05, 1e-05) |
|
|
- head_learning_rate: 0.01 |
|
|
- loss: CosineSimilarityLoss |
|
|
- distance_metric: cosine_distance |
|
|
- margin: 0.25 |
|
|
- end_to_end: False |
|
|
- use_amp: False |
|
|
- warmup_proportion: 0.1 |
|
|
- l2_weight: 0.01 |
|
|
- seed: 42 |
|
|
- evaluation_strategy: epoch |
|
|
- eval_max_steps: -1 |
|
|
- load_best_model_at_end: False |
|
|
|
|
|
### Training Results |
|
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|
|:------:|:----:|:-------------:|:---------------:| |
|
|
| 0.0014 | 1 | 0.2409 | - | |
|
|
| 0.0692 | 50 | 0.2872 | - | |
|
|
| 0.1383 | 100 | 0.2515 | - | |
|
|
| 0.2075 | 150 | 0.2327 | - | |
|
|
| 0.2766 | 200 | 0.1678 | - | |
|
|
| 0.3458 | 250 | 0.0977 | - | |
|
|
| 0.4149 | 300 | 0.0434 | - | |
|
|
| 0.4841 | 350 | 0.031 | - | |
|
|
| 0.5533 | 400 | 0.0183 | - | |
|
|
| 0.6224 | 450 | 0.0084 | - | |
|
|
| 0.6916 | 500 | 0.0069 | - | |
|
|
| 0.7607 | 550 | 0.0057 | - | |
|
|
| 0.8299 | 600 | 0.0045 | - | |
|
|
| 0.8990 | 650 | 0.0011 | - | |
|
|
| 0.9682 | 700 | 0.0005 | - | |
|
|
| 1.0 | 723 | - | 0.4558 | |
|
|
| 1.0373 | 750 | 0.0003 | - | |
|
|
| 1.1065 | 800 | 0.0008 | - | |
|
|
| 1.1757 | 850 | 0.0007 | - | |
|
|
| 1.2448 | 900 | 0.0001 | - | |
|
|
| 1.3140 | 950 | 0.0001 | - | |
|
|
| 1.3831 | 1000 | 0.0008 | - | |
|
|
| 1.4523 | 1050 | 0.0001 | - | |
|
|
| 1.5214 | 1100 | 0.0001 | - | |
|
|
| 1.5906 | 1150 | 0.0001 | - | |
|
|
| 1.6598 | 1200 | 0.0001 | - | |
|
|
| 1.7289 | 1250 | 0.0001 | - | |
|
|
| 1.7981 | 1300 | 0.0001 | - | |
|
|
| 1.8672 | 1350 | 0.0001 | - | |
|
|
| 1.9364 | 1400 | 0.0001 | - | |
|
|
| 2.0 | 1446 | - | 0.4562 | |
|
|
| 2.0055 | 1450 | 0.0 | - | |
|
|
| 2.0747 | 1500 | 0.0001 | - | |
|
|
| 2.1438 | 1550 | 0.0001 | - | |
|
|
| 2.2130 | 1600 | 0.0 | - | |
|
|
| 2.2822 | 1650 | 0.0001 | - | |
|
|
| 2.3513 | 1700 | 0.0 | - | |
|
|
| 2.4205 | 1750 | 0.0 | - | |
|
|
| 2.4896 | 1800 | 0.0 | - | |
|
|
| 2.5588 | 1850 | 0.0 | - | |
|
|
| 2.6279 | 1900 | 0.0 | - | |
|
|
| 2.6971 | 1950 | 0.0 | - | |
|
|
| 2.7663 | 2000 | 0.0 | - | |
|
|
| 2.8354 | 2050 | 0.0 | - | |
|
|
| 2.9046 | 2100 | 0.0 | - | |
|
|
| 2.9737 | 2150 | 0.0 | - | |
|
|
| 3.0 | 2169 | - | 0.4560 | |
|
|
| 3.0429 | 2200 | 0.0 | - | |
|
|
| 3.1120 | 2250 | 0.0 | - | |
|
|
| 3.1812 | 2300 | 0.0 | - | |
|
|
| 3.2503 | 2350 | 0.0 | - | |
|
|
| 3.3195 | 2400 | 0.0 | - | |
|
|
| 3.3887 | 2450 | 0.0 | - | |
|
|
| 3.4578 | 2500 | 0.0 | - | |
|
|
| 3.5270 | 2550 | 0.0 | - | |
|
|
| 3.5961 | 2600 | 0.0 | - | |
|
|
| 3.6653 | 2650 | 0.0 | - | |
|
|
| 3.7344 | 2700 | 0.0 | - | |
|
|
| 3.8036 | 2750 | 0.0 | - | |
|
|
| 3.8728 | 2800 | 0.0 | - | |
|
|
| 3.9419 | 2850 | 0.0 | - | |
|
|
| 4.0 | 2892 | - | 0.4593 | |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.9 |
|
|
- SetFit: 1.1.3 |
|
|
- Sentence Transformers: 3.2.0 |
|
|
- Transformers: 4.44.0 |
|
|
- PyTorch: 2.4.0+cu124 |
|
|
- Datasets: 2.21.0 |
|
|
- Tokenizers: 0.19.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
```bibtex |
|
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
|
doi = {10.48550/ARXIV.2209.11055}, |
|
|
url = {https://arxiv.org/abs/2209.11055}, |
|
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
|
publisher = {arXiv}, |
|
|
year = {2022}, |
|
|
copyright = {Creative Commons Attribution 4.0 International} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |